- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
是数列
的前
项和,对任意
都有
成立(其中
是常数).
(1)当
时,求
:
(2)当
时,
①若
,求数列
的通项公式:
②设数列
中任意(不同)两项之和仍是该数列中的一项,则称该数列是“
数列”,如果
,试问:是否存在数列
为“
数列”,使得对任意
,都有
,且
,若存在,求数列
的首项
的所有取值构成的集合;若不存在.说明理由.






(1)当


(2)当

①若


②设数列










已知等比数列
的公比为
,它的前
项积为
,且满足
,
,
,给出以下四个命题:①
;②
;③
为
的最大值;④ 使
成立的最大的正整数
为4031;则其中正确命题的序号为________













设数列
的前n项和为
,对一切
,点
都在函数
的图像上.
(1)证明:当
时,
;
(2)求数列
的通项公式;
(3)设
为数列
的前n项的积,若不等式
对一切
成立,求实数a的取值范围.





(1)证明:当


(2)求数列

(3)设



