- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点
,(
为正整数)都在函数
的图象上.
(1)若数列
是等差数列,证明:数列
是等比数列;
(2)设
,过点
的直线与两坐标轴所围成的三角形面积为
,试求最小的实数
,使
对一切正整数
恒成立;
(3)对(2)中的数列
,对每个正整数
,在
与
之间插入
个3,得到一个新的数列
,设
是数列
的前
项和,试探究2016是否是数列
中的某一项,写出你探究得到的结论并给出证明.



(1)若数列


(2)设






(3)对(2)中的数列










设数列
的前n项和为
,且
,
(1)求
、
、
的值,并求出
及数列
的通项公式;
(2)设
求数列
的前n项和
(3)设
在数列
中取出
(
为常数)项,按照原来的顺序排成一列,构成等比数列
.若对任意的数列
,均有
试求
的最小值.




(1)求





(2)设



(3)设









已知数列
的各项均为整数,其前n项和为
.规定:若数列
满足前r项依次成公差为1的等差数列,从第
项起往后依次成公比为2的等比数列,则称数列
为“r关联数列”.
(1)若数列
为“6关联数列”,求数列
的通项公式;
(2)在(1)的条件下,求出
,并证明:对任意
,
;
(3)若数列
为“6关联数列”,当
时,在
与
之间插入n个数,使这
个数组成一个公差为
的等差数列,求
,并探究在数列
中是否存在三项
,
,
其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项;若不存在,说明理由.





(1)若数列


(2)在(1)的条件下,求出



(3)若数列










