- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于项数为m(
且
)的有穷正整数数列
,记
,即
为
中的最小值,设由
组成的数列
称为
的“新型数列”.
(1)若数列
为2019,2020,2019,2018,2017,请写出
的“新型数列”
的所有项;
(2)若数列
满足
,且其对应的“新型数列”
项数
,求
的所有项的和;
(3)若数列
的各项互不相等且所有项的和等于所有项的积,求符合条件的
及其对应的“新型数列”
.










(1)若数列



(2)若数列





(3)若数列



某渔业公司今年初用
万元购进一艘渔船用于捕捞,已知第一年捕捞工作需各种费用
万元,从第二年开始,每年所需费用均比上一年增加
万元.若该渔船预计使用
年,其总花费(含购买费用)为________ 万元;当
______时,该渔船年平均花费最低(含购买费用).





德国著名数学家高斯,享有“数学王子”之美誉.他在研究圆内整点问题时,定义了一个函数
,其中
表示不超过
的最大整数,比如
. 根据以上定义,当
时,数列
,
,
( )








A.是等差数列,也是等比数列 | B.是等差数列,不是等比数列 |
C.是等比数列,不是等差数列 | D.不是等差数列,也不是等比数列 |
已知数列
的前
项和为
,且点
在函数
的图像上;
(1)求数列
的通项公式;
(2)设数列
满足:
,
,求
的通项公式;
(3)在第(2)问的条件下,若对于任意的
,不等式
恒成立,求实数
的取值范围;






(1)求数列

(2)设数列




(3)在第(2)问的条件下,若对于任意的


