- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若数列
满足
则称
为
数列.记
(1)若
为
数列,且
试写出
的所有可能值;
(2)若
为
数列,且
求
的最大值;
(3)对任意给定的正整数
是否存在
数列
使得
?若存在,写出满足条件的一个
数列
;若不存在,请说明理由.





(1)若




(2)若




(3)对任意给定的正整数






已知数列
,
为其前
项的和,满足
.
(1)求数列
的通项公式;
(2)设数列
的前
项和为
,数列
的前
项和为
,求证:当
,
时
;
(3)已知当
,且
时有
,其中
,求满足
的所有
的值.




(1)求数列

(2)设数列









(3)已知当





