- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设数列{an}的前n项和为Sn(n∈N*),有下列三个命题:
①若{an}既是等差数列又是等比数列,则an=an+1;
②若Sn=an(a为非零常数),则{an}是等比数列;
③若Sn=1-(-1)n,则{an}是等比数列.
其中真命题的序号是________.
①若{an}既是等差数列又是等比数列,则an=an+1;
②若Sn=an(a为非零常数),则{an}是等比数列;
③若Sn=1-(-1)n,则{an}是等比数列.
其中真命题的序号是________.
中国历法推测遵循以测为辅、以算为主的原则,例如《周髀算经》和《易经》里对二十四节气的晷(guǐ)影长的记录中,冬至和夏至的晷影长是实测得到的,其他节气的晷影长则是按照等差数列的规律计算得出的,下表为《周髀算经》对二十四节气晷影长的记录,其中115.1
寸表示115寸1
分(1寸=10分).已知《易经》中记录的冬至晷影长为130.0寸,夏至晷影长为14.8寸,那么《易经》中所记录的惊蛰的晷影长应为( )


A.72.4寸 | B.81.4寸 | C.82.0寸 | D.91.6寸 |
(本小题满分13分)已知数列
的前
项和为
,
,且
是
与
的等差中项.
(Ⅰ)求
的通项公式;
(Ⅱ)若数列
的前
项和为
,且对
,
恒成立,求实数
的最小值.







(Ⅰ)求

(Ⅱ)若数列






某化工厂从今年一月起,若不改善生产环境,按生产现状,每月收入为70万元,同时将受到环保部门的处罚,第一个月罚3万元,以后每月增加2万元.如果从今年一月起投资500万元添加回收净化设备(改造设备时间不计),一方面可以改善环境,另一方面也可以大大降低原料成本.据测算,添加回收净化设备并投产后的前5个月中的累计生产净收入
是生产时间
个月的二次函数
(
是常数),且前3个月的累计生产净收入可达309万,从第6个月开始,每个月的生产净收入都与第5个月相同.同时,该厂不但不受处罚,而且还将得到环保部门的一次性奖励100万元.
(1)求前8个月的累计生产净收入
的值;
(2)问经过多少个月,投资开始见效,即投资改造后的纯收入多于不改造时的纯收入.




(1)求前8个月的累计生产净收入

(2)问经过多少个月,投资开始见效,即投资改造后的纯收入多于不改造时的纯收入.