- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 距离测量问题
- + 高度测量问题
- 角度测量问题
- 正、余弦定理的其他应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,为测量某山峰的高度(即
的长),选择与
在同一水平面上的
,
为观测点.在
处测得山顶
的仰角为
,在
处测得山顶
的仰角为
.若
米,
,则山峰的高为_________ 米.













如图,一辆汽车在一条水平的公路上向正西行驶,到
处时测得公路北侧一山顶D在西偏北
的方向上,行驶600m后到达
处,测得此山顶在西偏北
的方向上,仰角为
,则此山的高度
________ m. 







《九章算术》中记载了一个“折竹抵地”问题,今年超强台风“山竹”登陆时再现了这一现象(如图所示),不少大树被大风折断.某路边一树干被台风吹断后(没有完全断开),树干与底面成
角,折断部分与地面成
角,树干底部与树尖着地处相距
米,则大树原来的高度是____ 米(结果保留根号).




如图,一辆汽车在一条水平的公路上向正西行驶,到
处测得公路北侧一山顶
在西偏北
(即
)的方向上;行驶
后到达
处,测得此山顶在西偏北
(即
)的方向上,且仰角为
.则此山的高度
=( )












A.![]() | B.![]() |
C.![]() | D.![]() |










中华人民共和国国歌有
个字,
小节,奏唱需要
秒,某校周一举行升旗仪式,旗杆正好处在坡度
的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为
和
,第一排和最后一排的距离为
米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)









A.![]() | B.![]() | C.![]() | D.![]() |
如图,为测量坡高MN,选择A和另一个山坡的坡顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知坡高BC=50米,则坡高MN=______米.

某人站在60米高的楼顶A处测量不可到达的电视塔高,测得塔顶C的仰角为300,塔底B的俯角为150,已知楼底部D和电视塔的底部B在同一水平面上,则电视塔的高
为 米.
为 米.
某同学在一山坡
处看对面山顶上的一座铁塔,如图所示,塔及所在的山崖可视为图中的竖线
,塔高
为80米,山高
为220米,
为200米,图中所示的山坡可视为直线
且点
在直线
上,
与水平地面的夹角为
,
.

(1)求塔尖
到山坡的距离;(精确到米)
(2)问此同学(忽略身高)距离山崖的水平地面多高时,观看塔的视角
最大?












(1)求塔尖

(2)问此同学(忽略身高)距离山崖的水平地面多高时,观看塔的视角
