- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 距离测量问题
- + 高度测量问题
- 角度测量问题
- 正、余弦定理的其他应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
上海市松江区天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”.兴趣小组同学实施如下方案来测量塔的倾斜度和塔高:如图,记O点为塔基、P点为塔尖、点P在地面上的射影为点H.在塔身OP射影所在直线上选点A,使仰角∠HAP=45°,过O点与OA成120°的地面上选B点,使仰角∠HPB=45°(点A、B、O都在同一水平面上),此时测得∠OAB=27°,A与B之间距离为33.6米.试求:

(1)塔高(即线段PH的长,精确到0.1米);
(2)塔身的倾斜度(即PO与PH的夹角,精确到0.1°).

(1)塔高(即线段PH的长,精确到0.1米);
(2)塔身的倾斜度(即PO与PH的夹角,精确到0.1°).
一幢高楼上安放了一块高约10 米的LED 广告屏,一测量爱好者在与高楼底部同一水平线上的C 处测得广告屏顶端A 处的仰角为 31.80°,再向大楼前进 20 米到D 处,测得广告屏顶端A 处的仰角为 37.38°(人的高度忽略不计).
(1)求大楼的高度(从地面到广告屏顶端)(精确到 1 米);
(2)若大楼的前方是一片公园空地,空地上可以安放一些长椅,为使坐在其中一个长椅上观看广告屏最清晰(长椅的高度忽略不计),长椅需安置在距大楼底部E 处多远?已知视角∠AMB(M 为观测者的位置,B 为广告屏底部)越大,观看得越清晰.
(1)求大楼的高度(从地面到广告屏顶端)(精确到 1 米);
(2)若大楼的前方是一片公园空地,空地上可以安放一些长椅,为使坐在其中一个长椅上观看广告屏最清晰(长椅的高度忽略不计),长椅需安置在距大楼底部E 处多远?已知视角∠AMB(M 为观测者的位置,B 为广告屏底部)越大,观看得越清晰.
如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18km,速度为1 000km/h,飞行员先看到山顶的俯角为30°,经过1min后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1km) ( )
A.11.4 | B.6.6 |
C.6.5 | D.5.6 |
为了测量某塔的高度,某人在一条水平公路
两点进行测量.在
点测得塔底
在南偏西
,塔顶仰角为
,此人沿着南偏东
方向前进10米到
点,测得塔顶的仰角为
,则塔的高度为








A.5米 | B.10米 |
C.15米 | D.20米 |
在数学建模课上,老师给大家带来了一则新闻:“2019年8月16日上午,423米的东莞第一高楼民盈国贸中心2号楼(以下简称“国贸中心”)正式封顶,随着最后一方混凝土浇筑到位,标志着东莞最高楼纪录诞生,由东莞本地航母级企业民盈集团刷新了东莞天际线,比之前的东莞第一高楼台商大厦高出134米.”在同学们的惊叹中,老师提出了问题:国贸中心真有这么高吗?我们能否运用所学知识测量验证一下?一周后,两个兴趣小组分享了他们各自的测量方案.
第一小组采用的是“两次测角法”:他们在国贸中心隔壁的会展中心广场上的
点测得国贸中心顶部的仰角为
,正对国贸中心前进了
米后,到达
点,在
点测得国贸中心顶部的仰角为
,然后计算出国贸中心的高度(如图).
第二小组采用的是“镜面反射法”:在国贸中心后面的新世纪豪园一幢11层楼(与国贸中心处于同一水平面,每层约3米)楼顶天台上,进行两个操作步骤:①将平面镜置于天台地面上,人后退至从镜中能看到国贸大厦的顶部位置,测量出人与镜子的距离为
米;②正对国贸中心,将镜子前移
米,重复①中的操作,测量出人与镜子的距离为
米.然后计算出国贸中心的高度(如图).
实际操作中,第一小组测得
米,
,
,最终算得国贸中心高度为
;第二小组测得
米,
米,
米,最终算得国贸中心高度为
;假设他们测量者的“眼高
”都为
米.

(1)请你用所学知识帮两个小组完成计算(参考数据:
,
,答案保留整数结果);
(2)你认为哪个小组的方案更好,说出你的理由.
第一小组采用的是“两次测角法”:他们在国贸中心隔壁的会展中心广场上的






第二小组采用的是“镜面反射法”:在国贸中心后面的新世纪豪园一幢11层楼(与国贸中心处于同一水平面,每层约3米)楼顶天台上,进行两个操作步骤:①将平面镜置于天台地面上,人后退至从镜中能看到国贸大厦的顶部位置,测量出人与镜子的距离为



实际操作中,第一小组测得











(1)请你用所学知识帮两个小组完成计算(参考数据:


(2)你认为哪个小组的方案更好,说出你的理由.