- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 几何中的三角函数模型
- + 三角函数在生活中的应用
- 三角函数在物理学中的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,已知
,
分别是
中点,弧
的半径分别为
,点
平分弧
,过点
作弧
的切线分别交
于点
.四边形
为矩形,其中点
在线段
上,点
在弧
上,延长
与
交于点
.设
,矩形
的面积为
.
(1)求
的解析式并求其定义域;
(2)求
的最大值.






















(1)求

(2)求


如图,某大型水上乐园内有一块矩形场地
米,
米,以
为直径的半圆
和半圆
(半圆在矩形
内部)为两个半圆形水上主题乐园,
都建有围墙,游客只能从线段
处进出该主题乐园.为了进一步提高经济效益,水上乐园管理部门决定沿着
修建不锈钢护栏,沿着线段
修建该主题乐园大门并设置检票口,其中
分别为
上的动点,
,且线段
与线段
在圆心
和
连线的同侧.已知弧线部分的修建费用为
元/米,直线部门的平均修建费用为
元/米.

(1)若
米,则检票等候区域(其中阴影部分)面积为多少平方米?
(2)试确定点
的位置,使得修建费用最低.




















(1)若

(2)试确定点

如图,某景区内有一半圆形花圃,其直径
为
,
是圆心,且
.在
上有一座观赏亭
,其中
.计划在
上再建一座观赏亭
,记
.

(1)当
时,求
的大小;
(2)当
越大,游客在观赏亭
处的观赏效果越佳,求游客在观赏亭
处的观赏效果最佳时,角
的正弦值.











(1)当


(2)当




如图,有一张半径为1米的圆形铁皮,工人师傅需要剪一块顶角为锐角的等腰三角形
,不妨设
,
边上的高为
,圆心为
,为了使三角形的面积最大,我们设计了两种方案.

(1)方案1:设
为
,用
表示
的面积
; 方案2:设
的高
为
,用
表示
的面积
;
(2)请从(1)中的两种方案中选择一种,求出
面积的最大值






(1)方案1:设











(2)请从(1)中的两种方案中选择一种,求出

如图1,一艺术拱门由两部分组成,下部为矩形
,
的长分别为
和
,上部是圆心为
的劣弧
,
.

(1)求图1中拱门最高点到地面的距离;
(2)现欲以B点为支点将拱门放倒,放倒过程中矩形
所在的平面始终与地面垂直,如图2、图3、图4所示.设
与地面水平线
所成的角为
.记拱门上的点到地面的最大距离为
,试用
的函数表示
,并求出
的最大值.








(1)求图1中拱门最高点到地面的距离;
(2)现欲以B点为支点将拱门放倒,放倒过程中矩形








如图,某沿海地区计划铺设一条电缆联通A、B两地,A处位于东西方向的直线MN上的陆地处,B处位于海上一个灯塔处,在A处用测角器测得
,在A处正西方向1km的点C处,用测角器测得
,现有两种铺设方案:① 沿线段AB在水下铺设;② 在岸MN上选一点P,先沿线段AP在地下铺设,再沿线段PB在水下铺设,预算地下、水下的电缆铺设费用分别为2万元/km,4万元/km.

(1)求A、B两点间的距离;
(2)请选择一种铺设费用较低的方案,并说明理由.



(1)求A、B两点间的距离;
(2)请选择一种铺设费用较低的方案,并说明理由.
南通风筝是江苏传统手工艺品之一.现用一张长2 m,宽1.5 m的长方形牛皮纸ABCD裁剪风筝面,裁剪方法如下:分别在边AB,AD上取点E,F,将三角形AEF沿直线EF翻折到
处,点
落在牛皮纸上,沿
,
裁剪并展开,得到风筝面
,如图1.
(1)若点E恰好与点B重合,且点
在BD上,如图2,求风筝面
的面积;
(2)当风筝面
的面积为
时,求点
到AB距离的最大值.





(1)若点E恰好与点B重合,且点


(2)当风筝面




某度假山庄拟对一半径为1百米的圆形地块(如图)进行改造,在该地块上修建一个等腰梯形的游泳池ABCD(A、B、C、D在圆周上) ,其中
,
,圆心O在梯形内部.设
,当该游泳池的面积与周长之比最大时为“最佳泳池”.

(1)求梯形游泳池的面积S(百米2)关于
的函数关系式(化到最简形式),并指明定义域;
(2)求当该游泳池为“最佳泳池”时
的值.




(1)求梯形游泳池的面积S(百米2)关于

(2)求当该游泳池为“最佳泳池”时

梯形
顶点
在以
为直径的圆上,
米.

(1)如图1,若电热丝由
这三部分组成,在
上每米可辐射1单位热量,在
上每米可辐射2单位热量,请设计
的长度,使得电热丝的总热量最大,并求总热量的最大值;
(2)如图2,若电热丝由弧
和弦
这三部分组成,在弧
上每米可辐射1单位热量,在弦
上每米可辐射2单位热量,请设计
的长度,使得电热丝辐射的总热量最大.





(1)如图1,若电热丝由




(2)如图2,若电热丝由弧





如图所示,某市拟在长为8 km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asin ωx(A>0,ω>0,x∈[0,4])的图象,且图象的最高点为S(3,2
);赛道的后一部分为折线段MNP.求A,ω的值和M,P两点间的距离.

