如图,AOB是一块半径为r的扇形空地,.某单位计划在空地上修建一个矩形的活动场地OCDE及一矩形停车场EFGH,剩余的地方进行绿化.若,设

(Ⅰ)记活动场地与停车场占地总面积为,求的表达式;
(Ⅱ)当为何值时,可使活动场地与停车场占地总面积最大.
当前题号:1 | 题型:解答题 | 难度:0.99
如图为某大河的一段支流,岸线近似满足宽度为7为河中的一个半径为2的小岛,小镇位于岸线上,且满足岸线现计划建造一条自小镇经小岛至对岸的通道(图中粗线部分折线段,右侧),为保护小岛,段设计成与圆相切,设

(1)试将通道的长表示成的函数,并指出其定义域.
(2)求通道的最短长.
当前题号:2 | 题型:解答题 | 难度:0.99
如图,有一块半圆形的空地,政府计划在空地上建一个矩形的市民活动广场ABCD及矩形的停车场EFGH,剩余的地方进行绿化,其中半圆的圆心为O,半径为r,矩形的一边AB在直径上,点C,D,G,H在圆周上,E,F在边CD上,且∠BOG=60°,设∠BOC=

(1)记市民活动广场及停车场的占地总面积为,求的表达式;
(2)当cos为何值时,可使市民活动广场及停车场的占地总面积最大.
当前题号:3 | 题型:解答题 | 难度:0.99
如图,某公园内有一块矩形绿地区域ABCD,已知AB=100米,BC=80米,以AD,BC为直径的两个半圆内种植花草,其它区域种值苗木. 现决定在绿地区域内修建由直路BN,MN和弧形路MD三部分组成的观赏道路,其中直路MN与绿地区域边界AB平行,直路为水泥路面,其工程造价为每米2a元,弧形路为鹅卵石路面,其工程造价为每米3a元,修建的总造价为W元. 设.

(1)求W关于的函数关系式;
(2)如何修建道路,可使修建的总造价最少?并求最少总造价.
当前题号:4 | 题型:解答题 | 难度:0.99
2019年扬州市政府打算在如图所示的某“葫芦”形花坛中建一喷泉,该花坛的边界是两个半径为12米的圆弧围成,两圆心之间的距离为米.在花坛中建矩形喷泉,四个顶点均在圆弧上,于点.设.

 当 时,求喷泉的面积;
(2)求为何值时,可使喷泉的面积最大?.
当前题号:5 | 题型:解答题 | 难度:0.99
如图,某公园内有两条道路,现计划在上选择一点,新建道路,并把所在的区域改造成绿化区域.已知

(1)若绿化区域的面积为1,求道路的长度;
(2)若绿化区域改造成本为10万元/,新建道路成本为10万元/.设),当为何值时,该计划所需总费用最小?
当前题号:6 | 题型:解答题 | 难度:0.99
如图是一个半径为2千米,圆心角为的扇形游览区的平面示意图是半径上一点,是圆弧上一点,且.现在线段,线段及圆弧三段所示位置设立广告位,经测算广告位出租收入是:线段处每千米为元,线段及圆弧处每千米均为元.设弧度,广告位出租的总收入为元.

(1)求关于的函数解析式,并指出该函数的定义域;
(2)试问:为何值时,广告位出租的总收入最大?并求出其最大值.
当前题号:7 | 题型:解答题 | 难度:0.99
为迎接新中国成立70周年,学校布置一椭圆形花坛,如图所示,是其中心,是椭圆的长轴,是短轴的一个端点.现欲铺设灌溉管道,拟在上选两点,使,沿铺设管道,设,若

(1)求管道长度关于角的函数及的取值范围;
(2)求管道长度的最小值.
当前题号:8 | 题型:解答题 | 难度:0.99
某校在圆心角为直角,半径为的扇形区域内进行野外生存训练.如图所示,在相距两个位置分别为300,100名学生,在道路上设置集合地点,要求所有学生沿最短路径到点集合,记所有学生进行的总路程为.

(1)设,写出关于的函数表达式;
(2)当最小时,集合地点离点多远?
当前题号:9 | 题型:解答题 | 难度:0.99
如图所示,某小区为美化环境,准备在小区内草坪的一侧修建一条直路,另一侧修建一条休闲大道,它的前一段是函数的一部分,后一段是函数),时的图象,图象的最高点为,垂足为.
(1)求函数的解析式;
(2)若在草坪内修建如图所示的儿童游乐园PMFE,问点落在曲线上何处时,儿童乐园的面积最大?
当前题号:10 | 题型:解答题 | 难度:0.99