刷题首页
题库
高中数学
题干
2019年扬州市政府打算在如图所示的某“葫芦”形花坛中建一喷泉,该花坛的边界是两个半径为12米的圆弧围成,两圆心
、
之间的距离为
米.在花坛中建矩形喷泉,四个顶点
,
,
,
均在圆弧上,
于点
.设
.
当
时,求喷泉
的面积
;
(2)求
为何值时,可使喷泉
的面积
最大?.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-18 05:06:26
答案(点此获取答案解析)
同类题1
某种儿童型防蚊液储存在一个容器中,该容器由两个半球和一个圆柱组成,(其中上半球是容器的盖子,防蚊液储存在下半球及圆柱中),容器轴截面如图所示,两头是半圆形,中间区域是矩形
,其外周长为
毫米.防蚊液所占的体积为圆柱体积和一个半球体积之和.假设
的长为
毫米.(注:
,其中
为球半径,
为圆柱底面积,
为圆柱的高)
(1)求容器中防蚊液的体积
关于
的函数关系式;
(2)如何设计
与
的长度,使得
最大?
同类题2
用长14.8 m的钢条制作一个长方体容器的框架,如果所制的底面的一边比另一边长0.5 m,那么容器的最大容积为________m
3
.
同类题3
某小区内有两条互相垂直的道路
与
,分别以
、
所在直线为
轴、
轴建立如图所示的平面直角坐标系
,其第一象限有一块空地
,其边界
是函数
的图象,前一段曲线
是函数
图象的一部分,后一段
是一条线段.测得
到
的距离为
米,到
的距离为
米,
长为
米.现要在此地建一个社区活动中心,平面图为梯形
(其中点
在曲线
上,点
在线段
上,且
、
为两底边).
(1)求函数
的解析式;
(2)当梯形的高为多少米时,该社区活动中心的占地面积最大,并求出最大面积.
同类题4
如图所示的钢板的边界
是抛物线的一部分,且
垂直于抛物线的对称轴,现欲从钢板上截取一块以
为下底边的等腰梯形钢板
,其中
,
均在抛物线弧上.设
(米),且
.
(1)当
时,求等腰梯形钢板的面积;
(2)当
为何值时,等腰梯形钢板的面积最大?并求出最大值.
同类题5
某地拟规划种植一批芍药,为了美观,将种植区域(区域Ⅰ)设计成半径为
的扇形
,中心角
.为方便观赏,增加收入,在种植区域外围规划观赏区(区域Ⅱ)和休闲区(区域Ⅲ),并将外围区域按如图所示的方案扩建成正方形
,其中点
,
分别在边
和
上.已知种植区、观赏区和休闲区每平方千米的年收入分别是10万元、20万元、20万元.
(1)要使观赏区的年收入不低于5万元,求
的最大值;
(2)试问:当
为多少时,年总收入最大?
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题
三角函数在生活中的应用