- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- + 几何中的三角函数模型
- 三角函数在生活中的应用
- 三角函数在物理学中的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某市欲建一个圆形公园,规划设立
,
,
,
四个出入口(在圆周上),并以直路顺次连通,其中
,
,
的位置已确定,
,
(单位:百米),记
,且已知圆的内接四边形对角互补,如图所示.请你为规划部门解决以下问题:

(1)如果
,求四边形
的区域面积;
(2)如果圆形公园的面积为
万平方米,求
的值.











(1)如果


(2)如果圆形公园的面积为


小明同学有两段如图一所示的长方形木块(长度足够),现小明要在两块长方形的一端分别截去△ABC与△DEF,使其拼接成如图二所示的一个角,则小明在第一段长方形木块截掉的∠ABC的余弦cos∠ABC=( )


A.![]() | B.![]() | C.![]() | D.![]() |
节能环保日益受到人们的重视,水污染治理也已成为“十三五”规划的重要议题.某地有三家工厂,分别位于矩形
的两个顶点
、
及
的中点
处,
,
,为了处理三家工厂的污水,现要在该矩形区域上(含边界),且与
、
等距离的一点
处,建造一个污水处理厂,并铺设三条排污管道
、
、
.设
∠BAO=x(弧度),排污管道的总长度为
.

(1)将
表示为
的函数;
(2)试确定
点的位置,使铺设的排污管道的总长度最短,并求总长度的最短公里数(精确到
).
















(1)将


(2)试确定


如图,正方形
的边长为2,
为
的中点,射线
从
出发,绕着点
顺时针方向旋转至
,在旋转的过程中,记
为
,
所经过的在正方
形
内的区域(阴影部分)的面积
,那么对于函数
有以下三个结论:
①
;② 对任意
,都有
;
③ 对任意
,且
,都有
;
其中所有正确结论的序号是_______ ;











形



①



③ 对任意



其中所有正确结论的序号是
如图是一个半径为1千米的扇形景点的平面示意图,
.原有观光道路OC,且
.为便于游客观赏,景点管理部门决定新建两条道路PQ、PA,其中P在原道路OC(不含端点O、C)上,Q在景点边界OB上,且
,同时维修原道路的OP段,因地形原因,新建PQ段、PA段的每千米费用分别是
万元、
万元,维修OP段的每千米费用是
万元.

(1)设
,求所需总费用
,并给出
的取值范围;
(2)当P距离O处多远时,总费用最小.







(1)设



(2)当P距离O处多远时,总费用最小.
某小区欲利用一块直角三角形空地(如图
)建一个正三角形(如图
)健身器材休闲场地,经测量
,
,
.若正三角形
的顶点在
的三条边界线上,则该健身器材休闲场地面积的最小值为________
.









如图,
是以原点为圆心的单位圆上的两个动点,若它们同时从点
出发,沿逆时针方向作匀角速度运动,其角速度分别为
(单位:弧度/秒),
为线段
的中点,记经过
秒后(其中
),
(I)求
的函数解析式;
(II)将
图象上的各点均向右平移2个单位长度,得到
的图象,求函数
的单调递减区间.








(I)求

(II)将




如图,P,Q是以原点为圆心的单位圆上的两个动点,若它们同时从点A(1,0)出发,沿逆时针方向作匀角速度运动,其角速度分别为
(单位:弧度/秒),M为线段PQ的中点,记经过x秒后(其中
),
.
(I)求
的函数解析式;
(II)将
图象上的各点均向右平移2个单位长度,得到
的图象,求函数
的单调递减区间.



(I)求

(II)将




摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.如图,某摩天轮最高点距离地面高度为120m,转盘直径为110m,设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min.

(1)游客甲坐上摩天轮的座舱,开始转动tmin后距离地面的高度为Hm,求在转动一周的过程中,H关于t的函数解析式;
(2)求游客甲在开始转动5min后距离地面的高度;
(3)若甲、乙两人分别坐在两个相邻的座舱里,在运行一周的过程中,求两人距离地面的高度差h(单位:m)关于t的函数解析式,并求高度差的最大值(精确到0.1).

(1)游客甲坐上摩天轮的座舱,开始转动tmin后距离地面的高度为Hm,求在转动一周的过程中,H关于t的函数解析式;
(2)求游客甲在开始转动5min后距离地面的高度;
(3)若甲、乙两人分别坐在两个相邻的座舱里,在运行一周的过程中,求两人距离地面的高度差h(单位:m)关于t的函数解析式,并求高度差的最大值(精确到0.1).
如图,某污水处理厂要在一正方形污水处理池
内修建一个三角形隔离区以投放净化物质,其形状为三角形
,其中
位于边
上,
位于边
上.已知
米,
,设
,记
,当
越大,则污水净化效果越好.
(1)求
关于的函数解析式,并求定义域;
(2)求
最大值,并指出等号成立条件?











(1)求

(2)求

