- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- + 几何中的三角函数模型
- 三角函数在生活中的应用
- 三角函数在物理学中的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某市计划在一片空地上建一个集购物、餐饮、娱乐为一体的大型综合园区,如图,已知两个购物广场的占地都呈正方形,它们的面积分别为13公顷和8公顷;美食城和欢乐大世界的占地也都呈正方形,分别记它们的面积为
公顷和
公顷;由购物广场、美食城和欢乐大世界围成的两块公共绿地都呈三角形,分别记它们的面积为
公顷和
公顷.

(1)设
,用关于
的函数
表示
,并求
在区间
上的最大值的近似值(精确到0.001公顷);
(2)如果
,并且
,试分别求出
、
、
、
的值.





(1)设






(2)如果






如图,一只蚂蚁绕一个竖直放置的圆环逆时针匀速爬行,已知圆环的半径为1米,圆环的圆心
距离地面的高度为1.5米,蚂蚁爬行一圈需要4分钟,且蚂蚁的起始位置在最低点
处.

(1)试写出蚂蚁距离地面的高度
(米)关于时刻
(分钟)的函数关系式
;
(2)在蚂蚁绕圆环爬行一圈的时间内,有多长时间蚂蚁距离地面超过1米?



(1)试写出蚂蚁距离地面的高度



(2)在蚂蚁绕圆环爬行一圈的时间内,有多长时间蚂蚁距离地面超过1米?
已知矩形
所在的平面与地面垂直,点
在地面上,设
,
,
与地面成
角(
),如图所示,
垂直地面,垂足为
,点
、
到
的距离分别为
,记
.

(1)若
,求
的最大值,并求此时的
值;
(2)若
的最大值为
,求
的值. 
















(1)若



(2)若




扇形AOB中心角为
,所在圆半径为
,它按如图(Ⅰ)(Ⅱ)两种方式有内接矩形CDE


A.![]() (1)矩形CDEF的顶点C、D在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设 ![]() (2)点M是圆弧AB的中点,矩形CDEF的顶点D、E在圆弧AB上,且关于直线OM对称,顶点C、F分别在半径OB、OA上,设 ![]() 试研究(1)(2)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大? |
如图半圆
的直径为4,
为直径
延长线上一点,且
,
为半圆周上任一点,以
为边作等边
(
、
、
按顺时针方向排列)

(1)若等边
边长为
,
,试写出
关于
的函数关系;
(2)问
为多少时,四边形
的面积最大?这个最大面积为多少?











(1)若等边





(2)问


某班设计了一个八边形的班徽(如图),它由腰长为1,
顶角为
的四个等腰三角形,及其底边构成的正方形所组成,
该八边形的面积为

顶角为

该八边形的面积为

A.![]() | B.![]() |
C.![]() | D.![]() |