刷题首页
题库
高中数学
题干
利用一半径为4cm的圆形纸片(圆心为O)制作一个正四棱锥.方法如下:
(1)以O为圆心制作一个小的圆;
(2)在小的圆内制作一内接正方形ABCD;
(3)以正方形ABCD的各边向外作等腰三角形,使等腰三角形的顶点落在大圆上(如图);
(4)将正方形ABCD作为正四棱锥的底,四个等腰三角形作为正四棱锥的侧面折起,使四个等腰三角形的顶点重合,问:要使所制作的正四棱锥体积最大,则小圆的半径为
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2019-01-10 09:42:11
答案(点此获取答案解析)
同类题1
如图,在矩形地块
中有两条道路
,其中
AF
是以
A
为顶点的抛物线段,
EC
是线段.
.在两条道路之间计划修建一个花圃,花圃形状为直角梯形
(线段
EQ
和
RP
为两个底边,如图所示).求该花圃的最大面积.
同类题2
做一个母线长为
的圆锥形漏斗,当其体积最大时,高应为__________
.
同类题3
如图边长为2的正方形花园的一角是以A为中心,1为半径的扇形水池.现需在其余部分设计一个矩形草坪PNCQ,其中P是水池边上任意一点,点N、Q分别在边BC和CD上,设∠PAB为θ.
(I)用θ表示矩形草坪PNCQ的面积,并求其最小值;
(II)求点P到边BC和AB距离之比
的最小值.
同类题4
如图,将边长为6的等边三角形各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正三棱柱形的容器.
(1)若这个容器的底面边长为
,容积为
,写出
关于
的函数关系式并注明定义域;
(2)求这个容器容积的最大值.
同类题5
现有一块大型的广告宣传版面,其形状是右图所示的直角梯形
.某厂家因产品宣传的需要,拟投资规划出一块区域(图中阴影部分)为产品做广告,形状为直角梯形
(点
在曲线段
上,点
在线段
上).已知
,
,其中曲线段
是以
为顶点,
为对称轴的抛物线的一部分.
(1)建立适当的平面直角坐标系,分别求出曲线段
与线段
的方程;
(2)求该厂家广告区域
的最大面积.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题
锥体体积的有关计算