刷题首页
题库
高中数学
题干
为响应“生产发展、生活富裕、乡风文明、村容整洁、管理民主”的社会主义新农村建设,某自然村将村边一块废弃的扇形荒地(如图)租给蜂农养蜂、产蜜与售蜜.已知扇形
AOB
中,
,
(百米),荒地内规划修建两条直路
AB
,
OC
,其中点
C
在
上(
C
与
A
,
B
不重合),在小路
AB
与
OC
的交点
D
处设立售蜜点,图中阴影部分为蜂巢区,空白部分为蜂源植物生长区.设
,蜂巢区的面积为
S
(平方百米).
(1)求
S
关于
的函数关系式;
(2)当
为何值时,蜂巢区的面积
S
最小,并求此时
S
的最小值.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-14 03:38:37
答案(点此获取答案解析)
同类题1
将一个半径为3dm,圆心角为
的扇形铁皮焊接成一个容积为V(dm
3
)的圆锥形无盖容器(忽略损耗).
(1)求V关于
的函数关系式
(2)当
为何值时,V取得最大值
(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5dm的球?请说明理由.
同类题2
如图所示,圆形纸片的圆心为
,半径为
, 该纸片上的正方形ABCD的中心为
.
,
,G,H为圆
上的点,
分别是以
,
,
,
为底边的等腰三角形.沿虚线剪开后, 分别以
,
,
,DA为折痕折起
使得
,
,G,H重合,得到四棱锥. 当正方形ABCD的边长变化时,所得四棱锥体积(单位:
)的最大值为( )
A.
B.
C.
D.
同类题3
如图是一个搭建好的帐篷,它的下部是一个正六棱柱,上部是一个正六棱锥,其中帐篷的高为
PO
,正六棱锥的高为
,且
PO
.设
m.
(1)当
x
=2 m,
m时,求帐篷的表面积;
(2)在
的长为定值
m的条件下,已知当且仅当
m时,帐篷的容积
最大,求
的值.
同类题4
某企业要设计制造一批大小、规格相同的长方体封闭水箱,已知每个水箱的表面积为432(每个水箱的进出口所占面积与制作材料的厚度均忽略不计).每个长方体水箱的底面长是宽的2倍.现设每个长方体水箱的底面宽是
,用
表示每个长方体水箱的容积.
(1)试求函数
的解析式及其定义域;
(2)当
为何值时,
有最大值,并求出最大值.
同类题5
已知球O的直径长为12,当它的内接正四棱锥的体积最大时,则该四棱锥的高为________.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题
正、余弦定理的其他应用