刷题首页
题库
高中数学
题干
某厂要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边要砌新墙,当砌新墙所用的材料最省时,堆料场的长和宽分别
为 ( )
A.32米,16米
B.30米,15米
C.40米,20米
D.36米,18米
上一题
下一题
0.99难度 单选题 更新时间:2018-02-27 03:33:01
答案(点此获取答案解析)
同类题1
表面积为
的球内接一个正三棱柱,则此三棱柱体积的最大值为( )
A.
B.
C.
D.
同类题2
如图,一个角形海湾AOB,∠AOB=2θ(常数θ为锐角).拟用长度为l(l为常数)的围网围成一个养殖区,有以下两种方案可供选择:
方案一 如图1,围成扇形养殖区OPQ,其中
=l;
方案二 如图2,围成三角形养殖区OCD,其中CD=l;
(1)求方案一中养殖区的面积S
1
;
(2)求证:方案二中养殖区的最大面积S
2
=
;
(3)为使养殖区的面积最大,应选择何种方案?并说明理由.
同类题3
如图所示,直四棱柱
内接于半径为
的半球
,四边形
为正方形,则该四棱柱的体积最大时,
的长为()
A.
B.
C.
D.
同类题4
要设计一个容积为
的有盖圆柱形容器,已知侧面的单位面积造价是底面单位面积造假的一半,而盖的单位面积造价是侧面单位面积的造价一半,问容器的底面半径
与高
之比为何值时,总造价最低.
同类题5
如图,有一矩形钢板ABCD缺损了一角(如图所示),边缘线OM上每一点到点D的距离都等于它到边AB的距离.工人师傅要将缺损的一角切割下来使剩余部分成一个五边形,若AB=1m,AD=0.5m,则五边形ABCEF的面积最大值为____m
2
.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题