- 集合与常用逻辑用语
- 函数与导数
- 函数最值与极值的关系辨析
- + 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,其中
为实数.
(1)当
时,求函数
在
上的最大值和最小值;
(2)求函数
的单调区间;
(3)若函数
的导函数
在
上有零点,求
的取值范围.


(1)当



(2)求函数

(3)若函数




已知函数
.
(1)若
在
处的切线与直线
垂直,求
的极值;
(2)若函数
的图象恒在直线
的下方.
①求实数
的取值范围;
②求证:对任意正整数
,都有
.

(1)若




(2)若函数


①求实数

②求证:对任意正整数


某生物探测器在水中逆流行进时,所消耗的能量为E=cvnT,其中v为行进时相对于水的速度,T为行进时的时间(单位:h),c为常数,n为能量次级数,如果水的速度为4km/h,该生物探测器在水中逆流行进200km.
(1)求T关于v的函数关系式;
(2)①当能量次级数为2时,求探测器消耗的最少能量;
②当能量次级数为3时,试确定v的大小,使该探测器消耗的能量最少.
(1)求T关于v的函数关系式;
(2)①当能量次级数为2时,求探测器消耗的最少能量;
②当能量次级数为3时,试确定v的大小,使该探测器消耗的能量最少.
某厂家拟在新年举行大型的促销活动,经测算某产品当促销费用为
万元时,销售量
万件满足
(其中
,
为正常数).现假定生产量与销售量相等,已知生产该产品
万件还需投入成本
万元(不含促销费用),产品的销售价格定为
万元/万件.
(1)将该产品的利润
万元表示为促销费用
万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大.








(1)将该产品的利润


(2)促销费用投入多少万元时,厂家的利润最大.
一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓后要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现三次音乐获得150分,出现两次音乐获得100分,出现一次音乐获得50分,没有出现音乐则获得-300分.设每次击鼓出现音乐的概率为
,且各次击鼓出现音乐相互独立.
(1)若一盘游戏中仅出现一次音乐的概率为
,求
的最大值点
;
(2)以(1)中确定的
作为
的值,玩3盘游戏,出现音乐的盘数为随机变量
,求每盘游戏出现音乐的概率
,及随机变量
的期望
;
(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.

(1)若一盘游戏中仅出现一次音乐的概率为



(2)以(1)中确定的






(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.
(江苏省徐州市2018届高三第一次质量检测数学试题)在平面直角坐标系
中,已知平行于
轴的动直线
交抛物线
:
于点
,点
为
的焦点.圆心不在
轴上的圆
与直线
,
,
轴都相切,设
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若直线
与曲线
相切于点
,过
且垂直于
的直线为
,直线
,
分别与
轴相交于点
,
.当线段
的长度最小时,求
的值.















(1)求曲线

(2)若直线












