- 集合与常用逻辑用语
- 函数与导数
- 函数最值与极值的关系辨析
- + 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)求函数
的最小值;
(2)当
时,记函数
的所有单调递增区间的长度为
,所有单调递减区间的长度为
,证明:
.(注:区间长度指该区间在
轴上所占位置的长度,与区间的开闭无关.)

(1)求函数

(2)当






传说《西游记》中孙悟空的“如意金箍棒”原本是东海海底的一枚“定海神针”.作为兵器,“如意金箍棒”威力巨大,且只有孙悟空能让其大小随意变化。假定孙悟空在使用“如意金箍棒”与各路妖怪打斗时,都将其变化为底面半径为4
至10
之间的圆柱体。现假定孙悟空刚与一妖怪打斗完毕,并降伏了此妖怪,此时“如意金箍棒”的底面半径为10
,长度为
.在此基础上,孙悟空使“如意金箍棒”的底面半径以每秒1
匀速缩短,同时长度以每秒40
匀速增长,且在这一变化过程中,当“如意金箍棒”的底面半径为8
时,其体积最大.
(1)求在这一变化过程中,“如意金箍棒”的体积
随时间
(秒)变化的解析式,并求出其定义域;
(2)假设在这一变化过程中,孙悟空在“如意金箍棒”体积最小时,将其定型,准备迎战下一个妖怪。求此时“如意金箍棒”的底面半径。







(1)求在这一变化过程中,“如意金箍棒”的体积


(2)假设在这一变化过程中,孙悟空在“如意金箍棒”体积最小时,将其定型,准备迎战下一个妖怪。求此时“如意金箍棒”的底面半径。