- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- + 利用导数研究函数的最值
- 函数最值与极值的关系辨析
- 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
,函数
.
(1)若
,求函数
的极值;
(2)设
,
是
的导数,
是
的导数,
,图像的最低点坐标为
,找出最大的实数
,满足对于任意正实数
且
,
成立.


(1)若


(2)设











已知函数
,
.
(Ⅰ)若
,求函数
在
的单调区间;
(Ⅱ)方程
有3个不同的实根,求实数
的取值范围;
(Ⅲ)当
时,若对于任意的
,都存在
,使得
,求满足条件的正整数
的取值的集合.


(Ⅰ)若



(Ⅱ)方程


(Ⅲ)当




