- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- + 利用导数研究函数的最值
- 函数最值与极值的关系辨析
- 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
与直线
有且只有一个交点,点P为椭圆C上任一点,
,
.若
的最小值为
.
(1)求椭圆C的标准方程;
(2)设直线
与椭圆C交于不同两点A,B,点O为坐标原点,且
,当
的面积S最大时,求
的取值范围.






(1)求椭圆C的标准方程;
(2)设直线




已知
,
,其中
是自然常数,
.
(1)当
时,求
的极值,并证明
恒成立;
(2)是否存在实数
,使
的最小值为
?若存在,求出
的值;若不存在,请说明理由.




(1)当



(2)是否存在实数



