- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- + 利用导数研究函数的最值
- 函数最值与极值的关系辨析
- 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设函数
,其中
为自然对数的底数.
(1)若曲线
在
轴上的截距为
,且在点
处的切线垂直于直线
,求实数
的值;
(2)记
的导函数为
,
在区间
上的最小值为
,求
的最大值.


(1)若曲线






(2)记






设函数
.
(1)求曲线
在点
处的切线方程;
(2)若函数
在
上恰有2个零点,求
的取值范围;
(3)当
时,若
对任意的正整数
在区间
上始终存在
个整数使得
成立,试问:正整数
是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.

(1)求曲线


(2)若函数



(3)当







已知函数
.
(Ⅰ)求函数
的单调区间;
(Ⅱ)如果对于任意的
,
恒成立,求实数
的取值范围;
(III)设函数
,
,过点
作函数
的图象的所有切线,令各切点的横坐标按从小到大构成数列
,求数列
的所有项之和的值.

(Ⅰ)求函数

(Ⅱ)如果对于任意的



(III)设函数





