- 集合与常用逻辑用语
- 函数与导数
- 函数极值的辨析
- + 求已知函数的极值
- 根据极值求参数
- 函数(导函数)图象与极值的关系
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)当
时,函数
在
处的切线方程为
,求
的值;
(2)当
时,设
的反函数为
(
的定义域即是
的值域).证明:函数
在区间
内无零点,在区间
内有且只有一个零点;
(3)求函数
的极值.

(1)当





(2)当








(3)求函数

汽车在道路上行驶每100千米平均燃料消耗量(单位:升)称为百公里油耗.已知某型号汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:
.
(1)当该型号汽车以40千米/小时的速度匀速行驶时,百公里油耗是多少升?
(2)当该型号汽车以多大的速度匀速行驶时,百公里油耗最低?最低为多少升?

(1)当该型号汽车以40千米/小时的速度匀速行驶时,百公里油耗是多少升?
(2)当该型号汽车以多大的速度匀速行驶时,百公里油耗最低?最低为多少升?