- 集合与常用逻辑用语
- 函数与导数
- + 用导数判断或证明已知函数的单调性
- 利用导数求函数的单调区间
- 由函数的单调区间求参数
- 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
是在
上每一点处均可导的函数,若
在
上恒成立.
(Ⅰ)①求证:函数
在
上是增函数;
②当
时,证明:
;
(Ⅱ)已知不等式
在
且
时恒成立,求证:




(Ⅰ)①求证:函数


②当



(Ⅱ)已知不等式




给出下列四个结论:①“若
,则
”的逆命题为真; ②若
为
的极值,则
; ③函数
有3个零点;④对于任意实数
,有
且
时,
,
,则
时,
.其中正确结论的序号是 .












