- 集合与常用逻辑用语
- 函数与导数
- + 利用导数研究函数的单调性
- 用导数判断或证明已知函数的单调性
- 利用导数求函数的单调区间
- 由函数的单调区间求参数
- 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义在R上的可导函数f(x)的导函数为f'(x),已知函数y=ef'(x)的图象如图所示,则函数y=f(x)的单调递减区间为( )


A.(1,+∞) | B.(1,e) | C.(+∞,e) | D.(e,+∞) |
已知函数f(x)=lnx
(a∈R).
(Ⅰ)若函数f(x)在[1,+∞)上为增函数,求a的取值范围;
(Ⅱ)若函数g(x)=xf(x)
ax2﹣x有两个不同的极值点x1,x2,证明
.

(Ⅰ)若函数f(x)在[1,+∞)上为增函数,求a的取值范围;
(Ⅱ)若函数g(x)=xf(x)


对于具有相同定义域D的函数
和
,若存在函数
(k,b为常数),对任给的正数m,存在相应的
,使得当
且
时,总有
,则称直线
为曲线
和
的“分渐近线”.给出定义域均为
的四组函数如下:
①
,
;
②
,
;
③
,
;
④
,
其中,曲线
和
存在“分渐近线”的是________.











①


②


③


④


其中,曲线

