- 集合与常用逻辑用语
- 函数与导数
- + 利用导数研究函数的单调性
- 用导数判断或证明已知函数的单调性
- 利用导数求函数的单调区间
- 由函数的单调区间求参数
- 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如果函数y=f(x)在区间I上是增函数,且函数
在区间I上是减函数,那么称函数y=f(x)是区间I上的“缓增函数”,区间I叫做“缓增区间”.若函数
是区间I上的“缓增函数”,则“缓增区间”I为( )


A.[1,+∞) | B.[0,![]() |
C.[0,1] | D.[1,![]() |
已知函数f(x)在定义域R内可导,其图象如图所示.记f(x)的导函数为f′(x),则不等式xf′(x)≤0的解集为( )


A.(﹣∞,![]() |
B.[![]() |
C.(﹣∞,![]() |
D.[![]() |