- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- + 导数及其应用
- 导数的概念和几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)求
的单调递增区间;
(2)若
在
处的切线与直线
垂直,求证:对任意
,都有
;
(3)若
,对于任意
,都有
成立,求实数
的取值范围.

(1)求

(2)若





(3)若




已知函数
,
,其中
是
的导函数.
(1)对满足
的一切
的值,都有
,求实数
的取值范围;
(2)设
,当实数
在什么范围内变化时,函数
的图象与直线
只有一个公共点.




(1)对满足




(2)设




设
, 已知函数
(Ⅰ) 证明
在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;
(Ⅱ) 设曲线
在点
处的切线相互平行, 且
证明
.


(Ⅰ) 证明

(Ⅱ) 设曲线




设函数
,
,其中
为实数.
(1)若
在
上是单调减函数,且
在
上有最小值,求
的取值范围;
(2)若
在
上是单调增函数,试求
的零点个数,并证明你的结论.



(1)若





(2)若


