- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- + 导数及其应用
- 导数的概念和几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分16分)设函数f(x)=xsinx(x∈R),
(Ⅰ)证明f(x+2kπ)-f(x)=2kπsinx,其中k为整数;
(Ⅱ)设x0为f(x)的一个极值点,证明
;
(提示
)
(Ⅲ)设f(x)在(0,+∞)内的全部极值点按从小到大的顺序排列a1,a2,,an,,证明
.
(Ⅰ)证明f(x+2kπ)-f(x)=2kπsinx,其中k为整数;
(Ⅱ)设x0为f(x)的一个极值点,证明

(提示

(Ⅲ)设f(x)在(0,+∞)内的全部极值点按从小到大的顺序排列a1,a2,,an,,证明

(本小题满分10分)已知函数f(x)=ln(2x-e), 点P(e,f(e))为函数的图像上一点
(1)求导函数
的解析式;
(2)求f(x)=ln(2x-e)在点P(e,f(e))处的切线的方程.
(1)求导函数

(2)求f(x)=ln(2x-e)在点P(e,f(e))处的切线的方程.
已知函数
,
.
(1)若
,求函数
的单调区间;
(2)若
恒成立,求实数
的取值范围;
(3)设
,若对任意的两个实数
满足
,总存在
,使得
成立,证明:
.


(1)若


(2)若


(3)设







(本小题满分13分) 设
,函数
,函数
,
.
(Ⅰ)判断函数
在区间
上是否为单调函数,并说明理由;
(Ⅱ)若当
时,对任意的
, 都有
成立,求实数
的取值范围;
(Ⅲ)当
时,若存在直线
(
),使得曲线
与曲线
分别位于直线
的两侧,写出
的所有可能取值. (只需写出结论)




(Ⅰ)判断函数


(Ⅱ)若当




(Ⅲ)当







(本小题满分13分)已知函数
,
.
(Ⅰ)当
时,求曲线
在点
处的切线方程;
(Ⅱ)当
时,求证:
在
上为增函数;
(Ⅲ)若
在区间
上有且只有一个极值点,求
的取值范围.


(Ⅰ)当



(Ⅱ)当



(Ⅲ)若



(本小题满分13分)设函数
,
,函数
的图象与
轴的交点在函数
的图象上,且在此点处两曲线有相同的切线.
(Ⅰ) 求
、
的值;
(Ⅱ) 设定义在
上的函数
的最大值为
,最小值为
,且
,求实数
的取值范围.





(Ⅰ) 求


(Ⅱ) 设定义在





