- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- + 导数及其应用
- 导数的概念和几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=2xlnx﹣x
2.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程
(2)若方程f′(x)=a在[
,+∞)有且仅有两个实根(其中f′(x)为f(x)的导函数,e为自然对数的底),求实数a的取值范围.

(1)求曲线y=f(x)在点(1,f(1))处的切线方程
(2)若方程f′(x)=a在[

设函数
(1)讨论
的单调性;
(2)若
有两个极值点
和
,记过点
的直线的斜率为
,问:是否存在
,使得
?若存在,求出
的值,若不存在,请说明理由.

(1)讨论

(2)若








已知函数
,
,
.
(1)若
,且
存在单调递减区间,求实数
的取值范围;
(2)设函数
的图象
与函数
的图象
交于点
,
,过线段
的中点作
轴的垂线分别交
,
于点
,
,证明:
在点
处的切线与
在点
处的切线不平行.



(1)若



(2)设函数
















已知函数f(x)=lnx
.
(1)若a=4,求函数f(x)的单调区间;
(2)若函数f(x)在区间(0,1]内单调递增,求实数a的取值范围;
(3)若x1、x2∈R+,且x1≤x2,求证:(lnx1﹣lnx2)(x1+2x2)≤3(x1﹣x2).

(1)若a=4,求函数f(x)的单调区间;
(2)若函数f(x)在区间(0,1]内单调递增,求实数a的取值范围;
(3)若x1、x2∈R+,且x1≤x2,求证:(lnx1﹣lnx2)(x1+2x2)≤3(x1﹣x2).