甲、乙两地相距500千米,一辆货车从甲地行驶到乙地,规定速度不得超过100千米小时.已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度(千米时)的平方成正比,比例系数为0.01;固定部分为元().
(1)把全程运输成本(元)表示为速度(千米时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
当前题号:1 | 题型:解答题 | 难度:0.99
物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是(  )
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
为美化环境,某市计划在以两地为直径的半圆弧上选择一点建造垃圾处理厂(如图所示).已知两地的距离为,垃圾场对某地的影响度与其到该地的距离有关,对两地的总影响度对地的影响度和对地影响度的和.记点到地的距离为,垃圾处理厂对两地的总影响度为.统计调查表明:垃圾处理厂对地的影响度与其到地距离的平方成反比,比例系数为;对地的影响度与其到地的距离的平方成反比,比例系数为.当垃圾处理厂建在弧的中点时,对两地的总影响度为.

(1)将表示成的函数;
(2)判断弧上是否存在一点,使建在此处的垃圾处理厂对两地的总影响度最小?若存在,求出该点到地的距离;若不存在,说明理由.
当前题号:3 | 题型:解答题 | 难度:0.99
小图给出了某池塘中的浮萍蔓延的面积与时间(月)的关系的散点图.有以下叙述:

①与函数相比,函数作为近似刻画的函数关系的模型更好;
②按图中数据显现出的趋势,第个月时,浮萍的面积就会超过
③按图中数据显现出的趋势,浮萍每个月增加的面积约是上个月增加面积的两倍;
④按图中数据显现出的趋势,浮萍从月的蔓延到至少需要经过个月.
其中正确的说法有__________(填序号).
当前题号:4 | 题型:填空题 | 难度:0.99
某矩形花园,的中点,在该花园中有一花圃其形状是以为直角顶点的内接Rt△,其中E、F分别落在线段和线段上如图.分别记的周长为的面积为

(1)试求的取值范围;
(2)为何值时的值为最小;并求的最小值.
当前题号:5 | 题型:解答题 | 难度:0.99
古代数学名著《九章算术》中的“盈不足”问题知两鼠穿垣.今有垣厚5尺,两鼠对穿.大鼠日一尺,小鼠亦一尺.大鼠日自倍,小鼠日自半.问:何日相逢?题意是:由垛厚五尺(旧制长度单位,尺= 寸)的墙壁,大小两只老鼠同时从墙的两面,沿一直线相对打洞.大鼠第一天打进尺,以后每天的速度为前一天的倍;小鼠第一天也打进尺,以后每天的进度是前一天的一半.它们多久可以相遇?
A.B.C.D.
当前题号:6 | 题型:单选题 | 难度:0.99
下表显示出函数值随自变量变化的一组数据,判断它最可能的函数模型是(  )
A.一次函数模型B.二次函数模型
C.指数函数模型D.对数函数模型
当前题号:7 | 题型:单选题 | 难度:0.99
(2018天津一中高三上学期第二次月考)某公司计划在甲、乙两个电视台做总时间不超过 300 分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.设该公司在甲、乙两个电视台做广告的时间分别为分钟和分钟.
(Ⅰ)用列出满足条件的数学关系式,并画出相应的平面区域;
(Ⅱ)该公司如何分配在甲、乙两个电视台做广告的时间使公司的收益最大,并求出最大收益是多少?
当前题号:8 | 题型:解答题 | 难度:0.99
“今有垣厚七尺八寸七有五,两鼠对穿,大鼠日一尺,小鼠日半尺,大鼠日增倍,小鼠日自半,问几何日相逢?”,意思是“今有土墙厚7.875尺,两鼠从墙两侧同时打洞,大鼠第一天打洞一尺,小鼠第一天打洞半尺,大鼠之后每天打洞长度比前一天多一倍,小鼠之后每天打洞长度是前一天的一半,问两鼠几天打通相逢?”两鼠相逢需要的天数为(    )
A.2B.3C.4D.5
当前题号:9 | 题型:单选题 | 难度:0.99
某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为p元,则销售量Q(单位:件)与零售价p(单位:元)有如下关系:Q=8300-170p-p2.问该商品零售价定为________元时毛利润最大(毛利润=销售收入-进货支出).
当前题号:10 | 题型:填空题 | 难度:0.99