- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- + 函数模型的应用实例
- 利用给定函数模型解决实际问题
- 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙两地相距500千米,一辆货车从甲地行驶到乙地,规定速度不得超过100千米
小时.已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度
(千米
时)的平方成正比,比例系数为0.01;固定部分为
元(
).
(1)把全程运输成本
(元)表示为速度
(千米
时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?





(1)把全程运输成本



(2)为了使全程运输成本最小,汽车应以多大速度行驶?
物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )
A.![]() | B.![]() | C.![]() | D.![]() |
为美化环境,某市计划在以
、
两地为直径的半圆弧
上选择一点
建造垃圾处理厂(如图所示).已知
、
两地的距离为
,垃圾场对某地的影响度与其到该地的距离有关,对
、
两地的总影响度对
地的影响度和对
地影响度的和.记
点到
地的距离为
,垃圾处理厂对
、
两地的总影响度为
.统计调查表明:垃圾处理厂对
地的影响度与其到
地距离的平方成反比,比例系数为
;对
地的影响度与其到
地的距离的平方成反比,比例系数为
.当垃圾处理厂建在弧
的中点时,对
、
两地的总影响度为
.

(1)将
表示成
的函数;
(2)判断弧
上是否存在一点,使建在此处的垃圾处理厂对
、
两地的总影响度最小?若存在,求出该点到
地的距离;若不存在,说明理由.




























(1)将


(2)判断弧




小图给出了某池塘中的浮萍蔓延的面积
与时间
(月)的关系的散点图.有以下叙述:

①与函数
相比,函数
作为近似刻画
与
的函数关系的模型更好;
②按图中数据显现出的趋势,第
个月时,浮萍的面积就会超过
;
③按图中数据显现出的趋势,浮萍每个月增加的面积约是上个月增加面积的两倍;
④按图中数据显现出的趋势,浮萍从
月的
蔓延到
至少需要经过
个月.
其中正确的说法有__________(填序号).



①与函数




②按图中数据显现出的趋势,第


③按图中数据显现出的趋势,浮萍每个月增加的面积约是上个月增加面积的两倍;
④按图中数据显现出的趋势,浮萍从




其中正确的说法有__________(填序号).
某矩形花园
,
,
,
是
的中点,在该花园中有一花圃其形状是以
为直角顶点的内接Rt△
,其中E、F分别落在线段
和线段
上如图.分别记
为
,
的周长为
,
的面积为
。

(1)试求
的取值范围;
(2)
为何值时
的值为最小;并求
的最小值.
















(1)试求

(2)



古代数学名著《九章算术》中的“盈不足”问题知两鼠穿垣.今有垣厚5尺,两鼠对穿.大鼠日一尺,小鼠亦一尺.大鼠日自倍,小鼠日自半.问:何日相逢?题意是:由垛厚五尺(旧制长度单位,
尺=
寸)的墙壁,大小两只老鼠同时从墙的两面,沿一直线相对打洞.大鼠第一天打进
尺,以后每天的速度为前一天的
倍;小鼠第一天也打进
尺,以后每天的进度是前一天的一半.它们多久可以相遇?





A.![]() | B.![]() | C.![]() | D.![]() |
下表显示出函数值
随自变量
变化的一组数据,判断它最可能的函数模型是( )




A.一次函数模型 | B.二次函数模型 |
C.指数函数模型 | D.对数函数模型 |
(2018天津一中高三上学期第二次月考)某公司计划在甲、乙两个电视台做总时间不超过 300 分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.设该公司在甲、乙两个电视台做广告的时间分别为
分钟和
分钟.
(Ⅰ)用
列出满足条件的数学关系式,并画出相应的平面区域;
(Ⅱ)该公司如何分配在甲、乙两个电视台做广告的时间使公司的收益最大,并求出最大收益是多少?


(Ⅰ)用

(Ⅱ)该公司如何分配在甲、乙两个电视台做广告的时间使公司的收益最大,并求出最大收益是多少?
“今有垣厚七尺八寸七有五,两鼠对穿,大鼠日一尺,小鼠日半尺,大鼠日增倍,小鼠日自半,问几何日相逢?”,意思是“今有土墙厚7.875尺,两鼠从墙两侧同时打洞,大鼠第一天打洞一尺,小鼠第一天打洞半尺,大鼠之后每天打洞长度比前一天多一倍,小鼠之后每天打洞长度是前一天的一半,问两鼠几天打通相逢?”两鼠相逢需要的天数为( )
A.2 | B.3 | C.4 | D.5 |
某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为p元,则销售量Q(单位:件)与零售价p(单位:元)有如下关系:Q=8300-170p-p2.问该商品零售价定为________元时毛利润最大(毛利润=销售收入-进货支出).