刷题首页
题库
高中数学
题干
为美化环境,某市计划在以
、
两地为直径的半圆弧
上选择一点
建造垃圾处理厂(如图所示).已知
、
两地的距离为
,垃圾场对某地的影响度与其到该地的距离有关,对
、
两地的总影响度对
地的影响度和对
地影响度的和.记
点到
地的距离为
,垃圾处理厂对
、
两地的总影响度为
.统计调查表明:垃圾处理厂对
地的影响度与其到
地距离的平方成反比,比例系数为
;对
地的影响度与其到
地的距离的平方成反比,比例系数为
.当垃圾处理厂建在弧
的中点时,对
、
两地的总影响度为
.
(1)将
表示成
的函数;
(2)判断弧
上是否存在一点,使建在此处的垃圾处理厂对
、
两地的总影响度最小?若存在,求出该点到
地的距离;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-08-10 04:48:05
答案(点此获取答案解析)
同类题1
埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔.令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部形为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为( )
A.128.5米
B.132.5米
C.136.5米
D.110.5米
同类题2
某新成立的汽车租赁公司今年年初用102万元购进一批新汽车,在使用期间每年有20万元的收入,并立即投入运营,计划第一年维修、保养费用1万元,从第二年开始,每年所需维修、保养费用比上一年增加1万元,该批汽车使用后同时该批汽车第
年底可以以
万元的价格出售.
(1)求该公司到第
年底所得总利润
(万元)关于
(年)的函数解析式,并求其最大值;
(2)为使经济效益最大化,即年平均利润最大,该公司应在第几年底出售这批汽车?说明理由.
同类题3
建造一间地面面积为12
的背面靠墙的猪圈, 底面为长方形的猪圈正面的造价为120元/
, 侧面的造价为80元/
, 屋顶造价为1120元. 如果墙高3
, 且不计猪圈背面的费用, 问怎样设计能使猪圈的总造价最低, 最低总造价是多少元?
同类题4
某森林出现火灾,火势正以每分钟100m
2
的速度顺风蔓延,消防站接到警报立即派消防员前去,在火灾发生后5分钟到达救火现场.已知消防队员在现场平均每人每分钟可灭火50m
2
,所消耗的灭火材料、劳务津贴等费用为每人每分钟125元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁1m
2
森林损失费为60元.则应该派多少名消防队员前去救火,才能使总损失最少?并求最少损失费.
同类题5
如图,已知
,
两镇分别位于东西湖岸
的
处和湖中小岛的
处,点
在
的正西方向
处,
,
,现计划铺设一条电缆联通
,
两镇,有两种铺设方案:①沿线段
在水下铺设;②在湖岸
上选一点
,先沿线段
在地下铺设,再沿线段
在水下铺设,预算地下、水下的电缆铺设费用分别为2万元
、4万元
.
(1)求
,
两镇间的距离;
(2)应该如何铺设,使总铺设费用最低?
相关知识点
函数与导数
函数的应用
函数模型及其应用
函数模型的应用实例
建立拟合函数模型解决实际问题
由导数求函数的最值