- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- + 函数模型的应用实例
- 利用给定函数模型解决实际问题
- 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图是我国2008年—2017年
年增量统计图.下列说法正确的是( )



A.2009年![]() ![]() |
B.与上一年比,![]() |
C.从2011年到2015年,![]() |
D.2016年![]() ![]() |
某人用一网箱饲养中华鲟,研究表明:一个饲养周期,该网箱中华鲟的产量
(单位:百千克)与购买饲料费用
(
)(单位:百元)满足:
.另外,饲养过程中还需投入其它费用
.若中华鲟的市场价格为
元/千克,全部售完后,获得利润
元.
(1)求
关于
的函数关系式;
(2)当
为何值时,利润最大,最大利润是多少元?







(1)求


(2)当

某市公园内的人工湖上有一个以点
为圆心的圆形喷泉,沿湖有一条小径
,在
的另一侧建有控制台
,
和
之间均有小径连接(小径均为直路),且
,喷泉中心
点距离
点60米,且
连线恰与
平行,在小径
上有一拍照点
,现测得
米,
米,且
.

(I)请计算小径
的长度;
(Ⅱ)现打算改建控制台
的位置,其离喷泉尽可能近,在点
的位置及
大小均不变的前提下,请计算
距离的最小值;
(Ⅲ)一人从小径一端
处向
处匀速前进时,喷泉恰好同时开启,喷泉开启
分钟后的水幕是一个以
为圆心,半径
米的圆形区域(含边界),此人的行进速度是
米/分钟,在这个人行进的过程中他会被水幕沾染,试求实数
的最小值.

















(I)请计算小径

(Ⅱ)现打算改建控制台




(Ⅲ)一人从小径一端







现有一块大型的广告宣传版面,其形状是右图所示的直角梯形
.某厂家因产品宣传的需要,拟投资规划出一块区域(图中阴影部分)为产品做广告,形状为直角梯形
(点
在曲线段
上,点
在线段
上).已知
,
,其中曲线段
是以
为顶点,
为对称轴的抛物线的一部分.

(1)建立适当的平面直角坐标系,分别求出曲线段
与线段
的方程;
(2)求该厂家广告区域
的最大面积.












(1)建立适当的平面直角坐标系,分别求出曲线段


(2)求该厂家广告区域

(美术班)如图所示,某畜牧基地要围成相同面积的长方形羊圈
间,一面可利用原有的墙壁,其余各面用篱笆围成,篱笆总长为
,每间羊圈的长和宽各为多少时,羊圈面积最大?




(普通班)学校食堂定期从某粮店以每吨
元的价格买大米,每次购进大米需支付运输劳务费
元,已知食堂每天需要大米
吨,贮存大米的费用为每吨每天
元,假定食堂每次均在用完大米的当天购买.
(1)该食堂每多少天购买一次大米,能使平均每天所支付的费用最少?
(2)粮店提出价格优惠条件:一次购买量不少于
吨时,大米价格可享受九五折优惠(即是原价的
),问食堂可否接受此优惠条件?请说明理由.




(1)该食堂每多少天购买一次大米,能使平均每天所支付的费用最少?
(2)粮店提出价格优惠条件:一次购买量不少于


如图,曲线
是一条居民平时散步的小道,小道两旁是空地,当地政府为了丰富居民的业余生活,要在小道两旁规划出两地来修建休闲活动场所,已知空地
和规划的两块用地(阴影区域)都是矩形,
,
,
,若以
所在直线为
轴,
为原点,建立如图平面直角坐标系,则曲线
的方程为
,记
,规划的两块用地的面积之和为
.(单位:)

(1)求
关于
的函数
;
(2)求
的最大值.













(1)求



(2)求

如图(1)是一直角墙角,
,墙角的两堵墙面和地面两两互相垂直.
是一块长
为
米,宽
为
米的板材,现欲用板材与墙角围成一个直棱柱空间堆放谷物. 
(1)若按如图(1)放置,如何放置板材才能使这个直棱柱空间最大?
(2)由于墙面使用受限,
面只能使用
米,
面只能使用
米.此矩形板材可以折叠围成一个直四棱柱空间,如图(2),如何折叠板材才能使这个空间最大?







(1)若按如图(1)放置,如何放置板材才能使这个直棱柱空间最大?
(2)由于墙面使用受限,




桑基鱼塘是某地一种独具地方特色的农业生产形式,某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块
平方米的矩形地块,中间挖成三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,池塘周围的基围宽均为
米,如图,设池塘所占总面积为
平方米.
(Ⅰ)试用
表示
.
(Ⅱ)当
取何值时,才能使得
最大?并求出
的最大值.



(Ⅰ)试用


(Ⅱ)当



