- 集合与常用逻辑用语
- 函数与导数
- 利用二次函数模型解决实际问题
- + 分段函数模型的应用
- 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某客运公司确定客票价格的方法是:如果行程不超过100公里,票价是每公里0.5元,如果超过100公里,超过部分按每公里0.4元定价,则客运票价
(元)与行程公里数
(公里)之间的函数关系式是_____.


随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)
收入
个税起征点
专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用
等.其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新个税政策的税率表部分内容如下:
(1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除.请问李某月应缴纳的个税金额为多少?
(2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭).若他们的月收入均为20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额
的分布列与期望.




级数 | 一级 | 二级 | 三级 | 四级 | ![]() |
每月应纳税所得额(含税) | 不超过3000元的部分 | 超过3000元至12000元的部分 | 超过12000元至25000元的部分 | 超过25000元至35000元的部分 | ![]() |
税率![]() | 3 | 10 | 20 | 25 | ![]() |
(1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除.请问李某月应缴纳的个税金额为多少?
(2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭).若他们的月收入均为20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额

某产品生产厂家生产一种产品,每生产这种产品
(百台),其总成本为
万元
,其中固定成本为42万元,且每生产1百台的生产成本为15万元
总成本
固定成本
生产成本
销售收入
万元
满足
,假定该产品产销平衡
即生产的产品都能卖掉
,根据上述条件,完成下列问题:
写出总利润函数
的解析式
利润
销售收入
总成本
;
要使工厂有盈利,求产量
的范围;
工厂生产多少台产品时,可使盈利最大?






















上海途安型号出租车价格规定:起步费
元,可行
千米;
千米以后按每千米按
元计价,可再行
千米;以后每千米都按
元计价。假如忽略因交通拥挤而等待的时间.
请建立车费
(元)和行车里程
(千米)之间的函数关系式;
注意到上海出租车的计价系统是以元为单位计价的,如:小明乘坐途安型号出租车从华师大二附中本部到浦东实验学校走路线一(路线一总长
千米)须付车费
元,走路线二(路线二总长
千米)也须付车费
元.将上述函数解析式进行修正(符号
表示不大于
的最大整数,符号
表示不小于
的最小整数);并求小明乘坐途安型号出租车从华师大二附中本部到闵行分校须付车费多少元?(注:两校区路线长
千米)



















某公司为了应对金融危机,决定适当进行裁员,已知这家公司现有职工
人(
,且
为10的整数倍),每人每年可创利100千元,据测算,在经营条件不变的前的提下,若裁员人数不超过现有人数的30%,则每裁员1人,留岗员工每人每年就能多创利1千元(即若裁员
人,留岗员工可多创利润
千元);若裁员人数超过现有人数的30%,则每裁员1人,留岗员工每人每年就能多创利2千元(即若裁员
人,留岗员工可多创利润
千元),为保证公司的正常运转,留岗的员工数不得少于现有员工人数的50%,为了保障被裁员工的生活,公司要付给被裁员工每人每年20千元的生活费.
(1)设公司裁员人数为
,写出公司获得的经济效益
(千元)关于
的函数(经济效益=在职人员创利总额—被裁员工生活费);
(2)为了获得最大的经济效益,该公司应裁员多少人?







(1)设公司裁员人数为



(2)为了获得最大的经济效益,该公司应裁员多少人?
某汽配厂生产某种零件,每个零件的出厂单价为60元,为了鼓励更多销售商订购,该厂决定当一次订购超过100个时,每多订购一个,订购的全部零件的出厂单价就降低
元,但实际出厂单价不低于51元.
当一次订购量最少为多少时,零件的实际出厂单价恰好为51元?
设一次订购量为x个,零件的实际出厂单价为p元,写出函数
的表达式.




目前,某市出租车的计价标准是:路程
以内(含
)按起步价8元收取,超过
后的路程按1.9元
收取,但超过
后的路程需加收
的返空费(即单价为
元
)
(1)若
,将乘客搭乘一次出租车的费用
(单位:元)表示为行程
(单位:
)的分段函数;
(2)某乘客行程为
,他准备先乘一辆出租车行驶
,然后再换乘另一辆出租车完成余下路程,请问:他这样做是否比只乘一辆出租车完成全程更省钱?








(1)若




(2)某乘客行程为


“H大桥”是某市的交通要道,提高过桥车辆的通行能力可改善整个城市的交通状况.研究表明:在一般情况下,大桥上的车流速度
(单位:千米/小时)是车流密度
(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为
;当车流密度不超过20辆/千米时,车流速度为60千米/小时;当
时,车流速度
是车流密度
的一次函数.
(1)当
时,求函数
的表达式.
(2)设车流量
,求当车流密度为多少时,车流量最大?






(1)当


(2)设车流量

攀枝花是一座资源富集的城市,矿产资源储量巨大,已发现矿种76种,探明储量39种,其中钒、钛资源储量分别占全国的63%和93%,占全球的11%和35%,因此其素有“钒钛之都”的美称.攀枝花市某科研单位在研发钛合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值
(
值越大产品的性能越好)与这种新合金材料的含量
(单位:克)的关系为:当
时,
是
的二次函数;当
时,
.测得部分数据如下表:
(Ⅰ)求
关于
的函数关系式
;
(Ⅱ)求该新合金材料的含量
为何值时产品的性能达到最佳.








![]() | 0 | 2 | 6 | 10 | … |
![]() | ![]() | 8 | 8 | ![]() | … |
(Ⅰ)求



(Ⅱ)求该新合金材料的含量

某种商品的销售价格会因诸多因素而上下浮动,经过调研得知:
年
月份第
(
,
)天的单件销售价格(单位:元
,第
天的销售量(单位:件)
为常数),且第
天该商品的销售收入为
元(销售收入
销售价格
销售量).
(1)求m的值;
(2)该月第几天的销售收入最高?最高为多少?












(1)求m的值;
(2)该月第几天的销售收入最高?最高为多少?