(文)市场上有一种新型的强力洗衣液,特点是去污速度快,已知每投放个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中,若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和,根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.
(1)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?
(2)若第一次投放2个单位的洗衣液,6分钟后再投放2个单位的洗衣液,问能否使接下来的4分钟内持续有效去污?说明理由.
当前题号:1 | 题型:解答题 | 难度:0.99
某上市股票在30天内每股的交易价格P(元)与时间t(天)组成有序数对,点落在如图所示的两条线段上.该股票在30天内(包括30天)的日交易量M(万股)与时间t(天)的部分数据如下表所示:

t
6
13
20
27
M(万股)
34
27
20
13
 
(1)根据提供的图象,写出该股票每股交易价格P(元)与时间t(天)所满足的函数关系式______;
(2)根据表中数据,写出日交易量M(万股)与时间t(天)的一次函数关系式:______;
(3)用y(万元)表示该股票日交易额,写出y关于t的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?
当前题号:2 | 题型:解答题 | 难度:0.99
某村充分利用自身资源,大力发展养殖业以增加收入.计划共投入80万元,全部用于甲、乙两个项目,要求每个项目至少要投入20万元在对市场进行调研时发现甲项目的收益与投入x(单位:万元)满足,乙项目的收益与投入x(单位:万元)满足.
(1)当甲项日的投入为25万元时,求甲、乙两个项目的总收益;
(2)问甲、乙两个项目各投入多少万元时,总收益最大?
当前题号:3 | 题型:解答题 | 难度:0.99
研究发现,在分钟的一节课中,注力指标与学生听课时间(单位:分钟)之间的函数关系为.
(1)在上课期间的前分钟内(包括第分钟),求注意力指标的最大值;
(2)根据专家研究,当注意力指标大于时,学生的学习效果最佳,现有一节分钟课,其核心内容为连续的分钟,问:教师是否能够安排核心内容的时间段,使得学生在核心内容的这段时间内,学习效果均在最佳状态?
当前题号:4 | 题型:解答题 | 难度:0.99
某旅游景区的景点处和处之间有两种到达方式,一种是沿直线步行,另一种是沿索道乘坐缆车,现有一名游客从处出发,以的速度匀速步行,后到达处,在处停留后,再乘坐缆车回到处.假设缆车匀速直线运动的速度为.

(1)求该游客离景点的距离关于出发后的时间的函数解析式,并指出该函数的定义域;
(2)做出(1)中函数的图象,并求该游客离景点的距离不小于的总时长.
当前题号:5 | 题型:解答题 | 难度:0.99
某商家计划投入10万元经销甲,乙两种商品,根据市场调查统计,当投资额为万元,经销甲,乙两种商品所获得的收益分别为万元与万元,其中,当该商家把10万元全部投入经销乙商品时,所获收益为5万元.
(1)求实数a的值;
(2)若该商家把10万元投入经销甲,乙两种商品,请你帮他制订一个资金投入方案,使他能获得最大总收益,并求出最大总收益.
当前题号:6 | 题型:解答题 | 难度:0.99
2018年非洲猪瘟在东北三省出现,为了进行防控,某地生物医药公司派出技术人员对当地甲乙两个养殖场提供技术服务,方案和收费标准如下:
方案一,公司每天收取养殖场技术服务费40元,对于需要用药的每头猪收取药费2元,不需要用药的不收费;
方案二,公司每天收取养殖场技术服务费120元,若需要用药的猪不超过45头,不另外收费,若需要用药的猪超过45头,超过部分每天收取药费8元.
(1)设日收费为(单位:元),每天需要用药的猪的数量为,试写出两种方案中 的函数关系式.
(2)若该医药公司从10月1日起对甲养殖场提供技术服务,10月31日该养殖场对其中一个猪舍9月份和10月份猪的发病数量进行了统计,得到如下列联表.
 
9月份
10月份
合计
未发病
40
85
125
发病
65
20
85
合计
105
105
210
 

根据以上列联表,判断是否有的把握认为猪未发病与医药公司提供技术服务有关.
附:

0.050
0.010
0.001

3.841
6.635
10.828
 
(3)当地的丙养殖场对过去100天猪的发病情况进行了统计,得到如上图所示的条形统计图.依据该统计数据,从节约养殖成本的角度去考虑,若丙养殖场计划结合以往经验从两个方案中选择一个,那么选择哪个方案更合适,并说明理由.
当前题号:7 | 题型:解答题 | 难度:0.99
某城市地铁项目正在紧张建设中,通车后将给市民出行带来便利.已知某条线路通车后,地铁的发车时间间隔(单位:分钟)满足.经测算,地铁载客量与发车时间间隔相关,当时地铁为满载状态,载客量为人,当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为分钟时的载客量为人,记地铁载客量为.
(1)求的表达式,并求当发车时间间隔为分钟时,地铁的载客量;
(2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?每分钟的最大净收益为多少?
当前题号:8 | 题型:解答题 | 难度:0.99
某控制器中有一个易损部件,该部件由两个电子元件按图1方式连接而成.已知这两个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常工作相互独立.(一个月按30天算)
    
(1)求该部件的使用寿命达到一个月及以上的概率;
(2)为了保证该控制器能稳定工作,将若干个同样的部件按图2连接在一起组成集成块.每一个部件是否能正常工作相互独立.某开发商准备大批量生产该集成块,在投入生产前,进行了市场调查,结果如下表:
集成块类型

成本
销售金额












 
其中是集成块使用寿命达到一个月及以上的概率,为集成块使用的部件个数.报据市场调查,试分析集成块使用的部件个数为多少时,开发商所得利润最大?并说明理由.
当前题号:9 | 题型:解答题 | 难度:0.99
某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:
(1)当取何值时,公交群体的人均通勤时间等于自驾群体的人均通勤时间?
(2)已知上班族的人均通勤时间计算公式为,讨论单调性,并说明其实际意义.
当前题号:10 | 题型:解答题 | 难度:0.99