- 集合与常用逻辑用语
- 函数与导数
- 利用二次函数模型解决实际问题
- + 分段函数模型的应用
- 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
由国家公安部提出,国家质量监督检验检疫总局发布的《车辆驾驶人员血液、呼气酒精含量阀值与检验标准(
)》于
年
月
日正式实施.车辆驾驶人员酒饮后或者醉酒后驾车血液中的酒精含量阀值见表.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”见图,

喝
瓶啤酒的情况
且图表示的函数模型
,则该人喝一瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:
,
)
( )
车辆驾车人员血液酒精含量阀值





喝

且图表示的函数模型



( )
驾驶行为类型 | 阀值![]() |
饮酒后驾车 | ![]() ![]() |
醉酒后驾车 | ![]() |
车辆驾车人员血液酒精含量阀值
A.![]() | B.![]() | C.![]() | D.![]() |
某便利店计划每天购进某品牌鲜奶若干件,便利店每销售一瓶鲜奶可获利
元;若供大于求,剩余鲜奶全部退回,但每瓶鲜奶亏损
元;若供不应求,则便利店可从外调剂,此时每瓶调剂品可获利
元.
(1)若便利店一天购进鲜奶
瓶,求当天的利润
(单位:元)关于当天鲜奶需求量
(单位:瓶,
)的函数解析式;
(2)便利店记录了
天该鲜奶的日需求量
(单位:瓶,
)整理得下表:
若便利店一天购进
瓶该鲜奶,以
天记录的各需求量的频率作为各需求量发生的概率,求当天利润在区间
内的概率.



(1)若便利店一天购进鲜奶




(2)便利店记录了



日需求量 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
若便利店一天购进



依法纳税是每个公民应尽的义务,个人取得的所得应依照《中华人民共和国个人所得税法》向国家缴纳个人所得税(简称个税).2019年1月1日起,个税税额根据应纳税所得额、税率和速算扣除数确定,计算公式为:个税税额=应纳税所得额×税率-速算扣除数.应纳税所得额的计算公式为:应纳税所得额=综合所得收入额-基本减除费用-专项扣除-专项附加扣除-依法确定的其它扣除.
其中,“基本减除费用”(免征额)为每年60000元.税率与速算扣除数见下表:
(1)设全年应纳税所得额为
元,应缴纳个税税额为
元,求
;
(2)小王全年综合所得收入额为189600元,假定缴纳的基本养老金、基本医疗保险费、失业保险等社会保险费和住房公积金占综合所得收入额的比例分别是
,
,
,
,专项附加扣除是52800元,依法确定其它扣除是4560元,那么他全年应缴纳多少综合所得个税?
(3)设小王全年综合所得收入额为
元,应缴纳综合所得个税税额为
元,求
关于
的函数解析式;并计算小王全年综合所得收入额由189600元增加到249600元,那么他全年缴纳多少综合所得个税?
注:“综合所得”包括工资、薪金,劳务报酬,稿酬,特许权使用费;“专项扣除”包括居民个人按照国家规定的范围和标准缴纳的基本养老保险、基本医疗保险费、失业保险等社会保险费和住房公积金等;“专项附加扣除”包括子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等支出;“其他扣除”是指除上述基本减除费用、专项扣除、专项附加扣除之外,由国务院决定以扣除方式减少纳税的优惠政策规定的费用.
其中,“基本减除费用”(免征额)为每年60000元.税率与速算扣除数见下表:
级数 | 全年应纳税所得额所在区间 | 税率(![]() | 速算扣除数 |
1 | ![]() | 3 | 0 |
2 | ![]() | 10 | 2520 |
3 | ![]() | 20 | 16920 |
… | … | … | … |
(1)设全年应纳税所得额为



(2)小王全年综合所得收入额为189600元,假定缴纳的基本养老金、基本医疗保险费、失业保险等社会保险费和住房公积金占综合所得收入额的比例分别是




(3)设小王全年综合所得收入额为




注:“综合所得”包括工资、薪金,劳务报酬,稿酬,特许权使用费;“专项扣除”包括居民个人按照国家规定的范围和标准缴纳的基本养老保险、基本医疗保险费、失业保险等社会保险费和住房公积金等;“专项附加扣除”包括子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等支出;“其他扣除”是指除上述基本减除费用、专项扣除、专项附加扣除之外,由国务院决定以扣除方式减少纳税的优惠政策规定的费用.
经过市场调查,超市中的某种小商品在过去的近40天的日销售量(单位:件)与价格(单位:元)为时间
(单位:天)的函数,且日销售量近似满足
,价格近似满足
.
(1)写出该商品的日销售额
(单位:元)与时间
(
)的函数解析式并用分段函数形式表示该解析式(日销售额=销售量
商品价格);
(2)求该种商品的日销售额
的最大值和最小值.



(1)写出该商品的日销售额




(2)求该种商品的日销售额

某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是( )
A.![]() | B.![]() | C.![]() | D.![]() |
一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为
(
)件.当
时,年销售总收人为(
)万元;当
时,年销售总收人为
万元.记该工厂生产并销售这种产品所得的年利润为
万元.(年利润=年销售总收入一年总投资)
(1)求
(万元)与
(件)的函数关系式;
(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?







(1)求


(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?
“依法纳税是每个公民应尽的义务”,国家征收个人所得税是分段计算的,总收入不超过
元,免征个人所得税,超过
元部分需征税,设全月纳税所得额为
,
全月总收入
元,税率见下表:
某人一月份应缴纳此项税款
元,则他当月工资总收入介于()





级数 | 全月纳税所得额 | 税率 |
![]() | 不超过![]() | ![]() |
![]() | 超过![]() ![]() | ![]() |
![]() | 超过![]() ![]() | ![]() |
… | … | … |
![]() | 超过![]() | ![]() |
某人一月份应缴纳此项税款

A.![]() | B.![]() |
C.![]() | D.![]() |
随着经济的发展,个人收入的提高.自2018年10月1日起,个人所得税起征点和税率的调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:
(1)假如小李某月的工资、薪金所得等税前收人总和不高于8000元,记
表示总收人,
表示应纳的税,试写出调整前后
关于
的函数表达式;
(2)某税务部门在小李所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:
先从收入在
及
的人群中按分层抽样抽取7人,再从中选2人作为新纳税法知识宣讲员,求两个宣讲员不全是同一收入人群的概率;
(3)小李该月的工资、薪金等税前收入为7500元时,请你帮小李算一下调整后小李的实际收入比调整前增加了多少?
个人所得税税率表(调整前) | 个人所得税税率表(调整后) | ||||
免征额3500元 | 免征额5000元 | ||||
级数 | 全月应纳税所得额 | 税率(%) | 级数 | 全月应纳税所得额 | 税率(%) |
1 | 不超过1500元的部分 | 3 | 1 | 不超过3000元的部分 | 3 |
2 | 超过1500元至4500元的部分 | 10 | 2 | 超过3000元至12000元的部分 | 10 |
3 | 超过4500元至9000元的部分 | 20 | 3 | 超过12000元至25000元的部分 | 10 |
… | … | … | … | … | … |
(1)假如小李某月的工资、薪金所得等税前收人总和不高于8000元,记




(2)某税务部门在小李所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:
收入(元) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 30 | 40 | 10 | 8 | 7 | 5 |
先从收入在


(3)小李该月的工资、薪金等税前收入为7500元时,请你帮小李算一下调整后小李的实际收入比调整前增加了多少?
重庆某重点中学高一新生小王家在县城A地,现在主城B地上学.周六小王的父母从早上8点从家出发,驾车3小时到达主城B地,期间由于交通等原因,小王父母的车所走的路程
(单位:km)与离家的时间
(单位:h)的函数关系为
.达到主城B地后,小王父母把车停在B地,在学校陪小王玩到16点,然后开车从B地以
的速度沿原路返回.
(1)求这天小王父母的车所走路程
(单位:km)与离家时间
(单位:h)的函数解析式;
(2)在距离小王家60
处有一加油站,求这天小王父母的车途经加油站的时间.




(1)求这天小王父母的车所走路程


(2)在距离小王家60

在直角梯形
中,
,
,
,动点
从点
出发,由
沿边运动(如图所示),
在
上的射影为
,设点
运动的路程为
,
的面积为
,则
的图象大致是

















A.![]() | B.![]() |
C.![]() | D.![]() |