- 集合与常用逻辑用语
- 函数与导数
- 利用二次函数模型解决实际问题
- + 分段函数模型的应用
- 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为
元/盒、
元/盒、
元/盒、
元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到
元,顾客就少付
元.每笔订单顾客网上支付成功后,李明会得到支付款的
.
①当
时,顾客一次购买草莓和西瓜各
盒,需要支付______元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则
的最大值为______.







①当


②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则

国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人血液中的酒精含量大于或等于20毫克/百毫升、小于80毫克/百毫升的行为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车,经过反复试验,喝一瓶啤酒后酒精在人体血液内的变化规律“散点图”如下:

该函数模型如下,
.
根据上述条件,回答以下问题:
(1)试计算喝1瓶啤酒后多少小时血液中的酒精含量达到最大值?最大值是多少?
(2)试计算喝1瓶啤酒后多少小时才可以驾车?(时间以整小时计)(参考数据:
)

该函数模型如下,

根据上述条件,回答以下问题:
(1)试计算喝1瓶啤酒后多少小时血液中的酒精含量达到最大值?最大值是多少?
(2)试计算喝1瓶啤酒后多少小时才可以驾车?(时间以整小时计)(参考数据:

某快餐代卖店代售多种类型的快餐,深受广大消费者喜爱.其中,
种类型的快餐每份进价为
元,并以每份
元的价格销售.如果当天20:00之前卖不完,剩余的该种快餐每份以
元的价格作特价处理,且全部售完.
(1)若该代卖店每天定制
份
种类型快餐,求
种类型快餐当天的利润
(单位:元)关于当天需求量
(单位:份,
)的函数解析式;
(2)该代卖店记录了一个月
天的
种类型快餐日需求量(每天20:00之前销售数量)
(i)假设代卖店在这一个月内每天定制
份
种类型快餐,求这一个月
种类型快餐的日利润(单位:元)的平均数(精确到
);
(ii)若代卖店每天定制
份
种类型快餐,以
天记录的日需求量的频率作为日需求量发生的概率,求
种类型快餐当天的利润不少于
元的概率.




(1)若该代卖店每天定制






(2)该代卖店记录了一个月


日需求量 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
天数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(i)假设代卖店在这一个月内每天定制




(ii)若代卖店每天定制





某花店每天以每枝
元的价格从农场购进若干枝玫瑰花,然后以每枝
元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进
枝玫瑰花,求当天的利润
(单位:元)关于当天需求量
(单位:枝,
)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进
枝玫瑰花,
表示当天的利润(单位:元),求
的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.


(1)若花店一天购进




(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进



(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.
现对一块长
米,宽
米的矩形场地ABCD进行改造,点E为线段BC的中点,点F在线段CD或AD上(异于A,C),设
(单位:米),
的面积记为
(单位:平方米),其余部分面积记为
(单位:平方米).
(1)求函数
的解析式;
(2)设该场地中
部分的改造费用为
(单位:万元),其余部分的改造费用为
(单位:万元),记总的改造费用为W单位:万元),求W最小值,并求取最小值时x的值.






(1)求函数

(2)设该场地中



水培植物需要一种植物专用营养液,已知每投放
且
个单位的营养液,它在水中释放的浓度
(克/升)随着时间
(天)变化的函数关系式近似为
,其中
,若多次投放,则某一时刻水中的营养液浓度为每次投放的营养液在相应时刻所释放的浓度之和,根据经验,当水中营养液的浓度不低于4(克/升)时,它才能有效.
(1)若只投放一次2个单位的营养液,则有效时间最多可能持续几天?
(2)若先投放2个单位的营养液,4天后再投放b个单位的营养液,要使接下来的2天中,营养液能够持续有效,试求
的最小值.






(1)若只投放一次2个单位的营养液,则有效时间最多可能持续几天?
(2)若先投放2个单位的营养液,4天后再投放b个单位的营养液,要使接下来的2天中,营养液能够持续有效,试求

山东新旧动能转换综合试验区是党的十九大后获批的首个区域性国家发展战略,也是中国第一个以新旧动能转换为主题的区域发展战略.泰安某高新技术企业决定抓住发展机遇,加快企业发展.已知该企业的年固定成本为500万元,每生产设备
台,需另投入成本
万元.若年产量不足80台,则
;若年产量不小于80台,则
.每台设备售价为100万元,通过市场分析,该企业生产的设备能全部售完.
(1)写出年利润
(万元)关于年产量
(台)的关系式;
(2)年产量为多少台时,该企业所获利润最大?




(1)写出年利润


(2)年产量为多少台时,该企业所获利润最大?
某地区居民生活用电分为高峰和低谷两个时间段进行分时计价,该地区的电网销售电价表如下:
若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式,该家庭本月应付的电费为______________元(用数字作答).
高峰时间段用电价格表 | |||
高峰月用电量 (单位:千瓦时) | 高峰电价 (单位:元/千瓦时) | ||
50及以下的部分 | 0.568 | ||
超过50至200的部分 | 0.598 | ||
超过200的部分 | 0.668 | ||
低谷时间段用电价格表 | |||
低谷月用电量 (单位:千瓦时) | 低谷电价 (单位:元/千瓦时) | ||
50及以下的部分 | 0.288 | ||
超过50至200的部分 | 0.318 | ||
超过200的部分 | 0.388 | ||
|
若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式,该家庭本月应付的电费为______________元(用数字作答).
(2017-2018学年湖北省荆州中学、宜昌一中等“荆、荆、襄、宜四地七校考试联盟”高三10月联考)省环保研究所对某市市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数
与时刻
(时)的关系为
,其中
是与气象有关的参数,且
,若用每天
的最大值为当天的综合放射性污染指数,并记作
.
(1)令
.求
的取值范围;
(2)求
;
(3)省政府规定,每天的综合放射性污染指数不得超过2,试问目前该市市中心的综合放射性污染指数是否超标.







(1)令


(2)求

(3)省政府规定,每天的综合放射性污染指数不得超过2,试问目前该市市中心的综合放射性污染指数是否超标.
(2017-2018学年山东省德州市2018届高三上学期期中考试)水培植物需要一种植物专用营养液,已知每投放
且
)个单位的营养液,它在水中释放的浓度
(克/升)随着时间 (天)变化的函数关系式近似为
,其中
,若多次投放,则某一时刻水中的营养液浓度为每次投放的营养液在相应时刻所释放的浓度之和,根据经验,当水中营养液的浓度不低于4(克/升)时,它才能有效.
(1)若只投放一次2个单位的营养液,则有效时间最多可能达到几天?
(2)若先投放2个单位的营养液,3天后再投放
个单位的营养液,要使接下来的2天中,营养液能够持续有效,试求
的最小值.





(1)若只投放一次2个单位的营养液,则有效时间最多可能达到几天?
(2)若先投放2个单位的营养液,3天后再投放

