- 集合与常用逻辑用语
- 函数与导数
- + 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
经市场调查,某商品在过去60天内的销售量和价格均为时间
天
的函数,且日销售量近似地满
,前40天价格为
,后20天价格为
.
试将日销售额S表示为时间t的函数;
在过去60天内哪一天销售额最多?哪一天销售额最少?







已知甲、乙两个旅游景点之间有一条5km的直线型水路,一艘游轮以
的速度航行时
考虑到航线安全要求
,每小时使用的燃料费用为
万元
为常数,且
,其他费用为每小时
万元.
若游轮以
的速度航行时,每小时使用的燃料费用为
万元,要使每小时的所有费用不超过
万元,求x的取值范围;
求该游轮单程航行所需总费用的最小值.












2016年汕头市开展了一场创文行动
一直以来,汕头市部分市民文明素质有待提高、环境脏乱差现象突出、交通秩序混乱、占道经营和违章搭建问题严重,为了解决这一老大难问题,汕头市政府打了一场史无前例的“创文”仗,目的是全力改善汕头市环境、卫生道路、交通各方面不文明现象,同时争夺2020年“全国文明城市”称号
随着创文活动的进行,我区生活环境得到了很大的改善,但因为违法出行的三轮车减少,市民出行偶有不便
有一商人从中看到商机,打算开一家汽车租赁公司,他委托一家调查公司进行市场调查,调查公司的调查结果如表:
若他打算购入汽车100辆用于租赁业务,通过调查发现租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元
由上表,他决定每辆车月租金定价满足:
为方便预测,月租金定价必须为50的整数倍;
不低于3000元;
定价必须使得公司每月至少能出租10辆汽车
设租赁公司每辆车月租金定价为x元时,每月能出租的汽车数量为y辆.
(1)按调查数据,请将y表示为关于x的函数.
(2)当x何值时,租赁公司月收益最大?最大月收益是多少?



每辆车月租金定价![]() ![]() | 3000 | 3050 | 3100 | 3150 | 3200 | 3250 | ![]() |
能出租的车辆数![]() | 100 | 99 | 98 | 97 | 96 | 95 | ![]() |
若他打算购入汽车100辆用于租赁业务,通过调查发现租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元





(1)按调查数据,请将y表示为关于x的函数.
(2)当x何值时,租赁公司月收益最大?最大月收益是多少?
某商场销售某种商品的经验表明,该商品每日的销售量
(单位:千克)与销售单价
(单位:元/千克)满足关系式
,其中
,
为常数,已知销售单价为
元/千克时,每日可售出该商品
千克.
(1)求
的值;
(2)若该商品的进价为
元/千克,试确定销售单价
的值,使商场每日销售该商品所获得的利润最大,并求出利润的最大值.







(1)求

(2)若该商品的进价为


经市场调查,某种商品在进价基础上每涨价1元,其销售量就减少10个,已知这种商品进价为40元/个,若按50元一个售出时能卖出500个.
(1)请写出售价x(
)元与利润y元之间的函数关系式;
(2)试计算当售价定为多少元时,获得的利润最大,并求出最大利润.
(1)请写出售价x(

(2)试计算当售价定为多少元时,获得的利润最大,并求出最大利润.
某地居民用水采用阶梯水价,其标准为:每户每月用水量不超过15吨的部分,每吨3元;超过15吨但不超过25吨的部分,每吨4.5元;超过25吨的部分,每吨6元.
(1)求某户居民每月需交水费
(元)关于用水量
(吨)的函数关系式;
(2)若
户居民某月交水费67.5元,求
户居民该月的用水量.
(1)求某户居民每月需交水费


(2)若


如图,要设计一张矩形广告牌,该广告牌含有大小相等的左右两个矩形栏目即图中阴影部分,这两栏的面积之和为
,四周空白的宽度为
,两栏之间的中缝空白的宽度为
,设广告牌的高为
.

(1)求广告牌的面积关于
的函数
;
(2)求广告牌的面积的最小值.





(1)求广告牌的面积关于


(2)求广告牌的面积的最小值.
某工厂在政府的帮扶下,准备转型生产一种特殊机器,生产需要投入固定成本
万元,生产与销售均已百台计数,且每生产
台,还需增加可变成本
万元,若市场对该产品的年需求量为
台,每生产
百台的实际销售收入近似满足函数
.
(
)试写出第一年的销售利润
(万元)关于年产量
(单位:百台,
,
)的函数关系式:(说明:销售利润=实际销售收入-成本)
(
)因技术等原因,第一年的年生产量不能超过
台,若第一年的年支出费用
(万元)与年产量
(百台)的关系满足
,问年产量
为多少百台时,工厂所得纯利润最大?






(





(






据调查,某地区有300万从事传统农业的农民,人均年收入6000元,为了增加农民的收入,当地政府积极引进资本,建立各种加工企业,对当地的农产品进行深加工,同时吸收当地部分农民进入加工企业工作,据估计,如果有
万人进企业工作,那么剩下从事传统农业的农民的人均年收入有望提高
,而进入企业工作的农民的人均年收入为
元.
(1)在建立加工企业后,多少农民进入企业工作,能够使剩下从事传统农业农民的总收入最大,并求出最大值;
(2)为了保证传统农业的顺利进行,限制农民加入加工企业的人数不能超过总人数的
,当地政府如何引导农民,即
取何值时,能使300万农民的年总收入最大.



(1)在建立加工企业后,多少农民进入企业工作,能够使剩下从事传统农业农民的总收入最大,并求出最大值;
(2)为了保证传统农业的顺利进行,限制农民加入加工企业的人数不能超过总人数的


某车间生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元.已知该车间制造电子元件的过程中,次品率
与日产量
的函数关系是:
.
(1)写出该车间的日盈利额
(元)与日产量
(件)之间的函数关系式;
(2)为使日盈利额最大,该车间的日产量应定为多少件?



(1)写出该车间的日盈利额


(2)为使日盈利额最大,该车间的日产量应定为多少件?