- 集合与常用逻辑用语
- 函数与导数
- + 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一个车辆制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量
(辆)与创造的价值
(元)之间满足二次函数关系。已知产量为
时,创造的价值也为0;当产量为55辆时,创造的价值达到最大6050元。若这家工厂希望利用这条流水线创收达到6000元及以上,则它应该生产的摩托车数量至少是 _____________ ;



请你帮忙设计2010年玉树地震灾区小学的新校舍,如图,在学校的东北力有一块地,其中两面是不能动的围墙,在边界
内是不能动的一些体育设施.现准备在此建一栋教学楼,使楼的底面为一矩形,且靠围墙的方向须留有5米宽的空地,问如何设计,才能使教学楼的面积最大?


某商场经营一批进价是30元/件的商品,在市场试销中发现,此商品销售价
元与日销售量
件之间有如下关系:
(1)确定
与
的一个一次函数关系式
;
(2)若日销售利润为P元,根据(I)中关系写出P关于
的函数关系,并指出当销售单价为多少元时,才能获得最大的日销售利润?


x | 45 | 50 |
y | 27 | 12 |
(1)确定



(2)若日销售利润为P元,根据(I)中关系写出P关于

某公司在甲、乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销售量为x(单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为()
A.90万元 | B.120万元 |
C.120.25万元 | D.60万元 |
某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).

(1)分别将A、B两种产品的利润表示为投资的函数关系式;
(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产.
①若平均投入生产两种产品,可获得多少利润?
②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?
某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元.
(1)问第几年开始获利;
(2)若干年后有两种处理方案:①年平均利润最大时,以26万元出售该船;②总纯收入获利最大时,以8万元出售该船.问哪种方案更合算.
(1)问第几年开始获利;
(2)若干年后有两种处理方案:①年平均利润最大时,以26万元出售该船;②总纯收入获利最大时,以8万元出售该船.问哪种方案更合算.
首届中国国际进口博览会在2018年11月5日—10日在上海国家会展中心举办。会议期间,某公司欲采购东南亚某水果种植基地的水果,公司刘总经理与该种植基地的负责人陈老板商定一次性采购一种水果的采购价
(元/吨)与采购量
(吨)之间的函数关系的图象如图中的折线
所示(不包含端点
,但包含端点
).

(Ⅰ)求
与
之间的函数关系式;
(Ⅱ)已知该水果种植基地种植该水果的成本是2800元/吨,那么刘总经理的采购量为多少时,该水果基地在这次买卖中所获得利润
最大?最大利润是多少?






(Ⅰ)求


(Ⅱ)已知该水果种植基地种植该水果的成本是2800元/吨,那么刘总经理的采购量为多少时,该水果基地在这次买卖中所获得利润

某外商到一开发区投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元。设
表示前
年的纯收入(
前
年的总收入一前
年的总支出一投资额)
(1)试写出
的关系式.
(2) 该开发商从第几年开始获利?





(1)试写出

(2) 该开发商从第几年开始获利?
经过市场调查,超市中的某种小商品在过去的近40天的日销售量(单位:件)与价格(单位:元)为时间
(单位:天)的函数,且日销售量近似满足
,价格近似满足
.
(1)写出该商品的日销售额
(单位:元)与时间
(
)的函数解析式并用分段函数形式表示该解析式(日销售额=销售量
商品价格);
(2)求该种商品的日销售额
的最大值和最小值.



(1)写出该商品的日销售额




(2)求该种商品的日销售额
