刷题首页
题库
高中数学
题干
如图,要设计一张矩形广告牌,该广告牌含有大小相等的左右两个矩形栏目即图中阴影部分,这两栏的面积之和为
,四周空白的宽度为
,两栏之间的中缝空白的宽度为
,设广告牌的高为
.
(1)求广告牌的面积关于
的函数
;
(2)求广告牌的面积的最小值.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-15 10:49:24
答案(点此获取答案解析)
同类题1
市场上常有这样的一个规律:某商品价格越高,购买的人越少,价格越低,购买的人越多。现在某杂志,若定价每本2元的价格,则可以发行10万本,若每本价格每提高0.2元,发行量就减少5000本,要使总收入不低于22.4万元,则每一本杂志的最高定价为______元.
同类题2
在矩形
ABCD
中,已知
,在
AB
、
AD
、
CD
、
CB
上分别截取
AE
、
AH
、
CG
、
CF
都等于
,
(1)将四边形
EFGH
的面积
S
表示成
的函数,并写出函数的定义域
(2)当
为何值时,四边形
EFGH
的面积最大?并求出最大面积
同类题3
养鱼场中鱼群的最大养殖量为
,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留出适当的空闲量.已知鱼群的年增长量
和实际养殖量
与空闲率的乘积成正比,比例系数为
.注:
(1)写出
关于
的函数关系式,并指出这个函数的定义域;
(2)求鱼群年增长量的最大值;
(3)当鱼群的年增长量达到最大值时,求
的取值范围.
同类题4
经过市场调查,超市中的某种小商品在过去的近40天的日销售量(单位:件)与价格(单位:元)为时间
(单位:天)的函数,且日销售量近似满足
,价格近似满足
.
(1)写出该商品的日销售额
(单位:元)与时间
(
)的函数解析式并用分段函数形式表示该解析式(日销售额=销售量
商品价格);
(2)求该种商品的日销售额
的最大值和最小值.
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
利用二次函数模型解决实际问题
基本不等式求和的最小值