- 集合与常用逻辑用语
- 函数与导数
- + 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元。
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
市场上常有这样一个规律:某商品价格越高,购买的人越少;价格低,购买的人较多,现有某杂志,若以每本2元的价格可以发行10万本,若每本价格每提高0.2元,发行量就减少5000本,要使总收入不低于22.4万元,则该杂志的定价应是多少元?每本价格是多少元时,可使总收入最高?
恩施州某电影院共有1000个座位,票价不分等次,根据电影院的经营经验,当每张票价不超过10元时、票可全部售出;当票价高于10元时,每提高1元,将有30张票不能售出,为了获得更好的收入,需要给电影院一个合适的票价,基本条件是:①为了方便找零和算账,票价定为1元的整数倍.②影院放映一场电影的成本是4000元,票房收入必须高于成本,用x(元)表示每张票价,用y(元)表示该电影放映一场的纯收入(除去成本后的收入).
(1)求函数y=f(x)的解析式;
(2)票价定为多少时,电影放映一场的纯收入最大?
(1)求函数y=f(x)的解析式;
(2)票价定为多少时,电影放映一场的纯收入最大?
某商贸公司售卖某种水果.经市场调研可知:在未来
天内,这种水果每箱的销售利润
(单位:元)与时间
,单位:天)之间的函数关系式为
, 且日销售量
(单位:箱)与时间
之间的函数关系式为
①第
天的销售利润为__________元;
②在未来的这
天中,公司决定每销售
箱该水果就捐赠
元给 “精准扶贫”对象.为保证销售积极性,要求捐赠之后每天的利润随时间
的增大而增大,则
的最小值是__________.







①第

②在未来的这





美国对中国芯片的技术封锁,这却激发了中国“芯”的研究热潮,中国华为公司研发的
、
两种芯片都已获得成功.该公司研发芯片已经耗费资金
千万元,现在准备投入资金进行生产,经市场调查与预测,生产
芯片的毛收入与投入的资金成正比,已知每投入
千万元,公司获得毛收入
千万元;生产
芯片的毛收入
(千万元)与投入的资金
(千万元)的函数关系为
(
与
都为常数),其图象如图所示.

(1)试分别求出生产
、
两种芯片的毛收入
(千万元)与投入资金
(千万元)函数关系式;
(2)现在公司准备投入
亿元资金同时生产
、
两种芯片,设投入
千万元生产
芯片,用
表示公司所获利润,当
为多少时,可以获得最大利润?并求最大利润.(利润
芯片毛收入
芯片毛收入
研发耗费资金)













(1)试分别求出生产




(2)现在公司准备投入










某纪念章从某年某月某日起开始上市,通过市场调査,得到该纪念章每
枚的市场价
(单位:元)与上市时间
(单位:天)的数据如下:
(1)根据上表数计,从下列函数中选取一个恰当的函数描述该纪念章的市场价
与上市时间
的变化关系并说明理由:①
;②
;③
;④
;
(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格.



上市时间![]() | ![]() | ![]() | ![]() |
市场价![]() | ![]() | ![]() | ![]() |
(1)根据上表数计,从下列函数中选取一个恰当的函数描述该纪念章的市场价






(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格.
在充分竞争的市场环境中,产品的定价至关重要,它将影响产品的销量,进而影响生产成本、品牌形象等
某公司根据多年的市场经验,总结得到了其生产的产品A在一个销售季度的销量
单位:万件
与售价
单位:元
之间满足函数关系
,A的单件成本
单位:元
与销量y之间满足函数关系
.
当产品A的售价在什么范围内时,能使得其销量不低于5万件?
当产品A的售价为多少时,总利润最大?
注:总利润
销量
售价
单件成本
















已知某零件在
周内周销售价格
(元)与时间
(周)
的函数关系近似如图所示(图象由两条线段组成),且周销售量
近似满足函数
(件).

(1)根据图象求该零件在
周内周销售价格
(元)与时间
(周)的函数关系式
;
(2)试问这
周内哪周的周销售额最大?并求出最大值.
(注:周销售额=周销售价格
周销售量)







(1)根据图象求该零件在




(2)试问这

(注:周销售额=周销售价格

2019年,随着中国第一款5G手机投入市场,5G技术已经进入高速发展阶段.已知某5G手机生产厂家通过数据分析,得到如下规律:每生产手机
万台,其总成本为
,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入
万元满足
(1)将利润
表示为产量
万台的函数;
(2)当产量
为何值时,公司所获利润最大?最大利润为多少万元?




(1)将利润


(2)当产量

寒假即将到来,某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每在支出20元的各种费用(人工费,消耗费用等等).受市场调控,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(x为10的正整数倍)
(1)设宾馆一天的利润为W元, 求W与x的函数关系式;
(2)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
(1)设宾馆一天的利润为W元, 求W与x的函数关系式;
(2)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?