- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- + 常见的函数模型(1)——二次、分段函数
- 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某公司研制出了一种新产品,试制了一批样品分别在国内和国外上市销售,并且价格根据销售情况不断进行调整,结果40天内全部销完.公司对销售及销售利润进行了调研,结果如图所示,其中图①(一条折线)、图②(一条抛物线段)分别是国外和国内市场的日销售量与上市时间的关系,图③是每件样品的销售利润与上市时间的关系.

(1)分别写出国外市场的日销售量f(t)与上市时间t的关系及国内市场的日销售量g(t)与上市时间t的关系;
(2)国外和国内的日销售利润之和有没有可能恰好等于6 300万元?若有,请说明是上市后的第几天;若没有,请说明理由.

(1)分别写出国外市场的日销售量f(t)与上市时间t的关系及国内市场的日销售量g(t)与上市时间t的关系;
(2)国外和国内的日销售利润之和有没有可能恰好等于6 300万元?若有,请说明是上市后的第几天;若没有,请说明理由.
<中华人民共和国个人所得税法>规定,公民全月工资、薪金所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额,此项税款按下表分段累计计算:

(1)若某人一月份应缴纳此项税款为280元,那么他当月的工资、薪金所得是多少?
(2)假设某人一个月的工资、薪金所得是
元(0<
10000),试将其当月应缴纳此项税款
元表示成关于
的函数.

(1)若某人一月份应缴纳此项税款为280元,那么他当月的工资、薪金所得是多少?
(2)假设某人一个月的工资、薪金所得是




某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超过
万元,则超过部分按
进行奖励.记奖金为
(单位:万元),销售利润为
(单位:万元).
(1)写出奖金
关于销售利润
的关系式;
(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?




(1)写出奖金


(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?
一只小船以
的速度由南向北匀速驶过湖面,在离湖面高20米的桥上,一辆汽车由西向东以
的速度前进(如图),现在小船在水平面上的
点以南的40米处,汽车在桥上
点以西的30米处(其中
水平面),请画出合适的空间图形并求小船与汽车间的最短距离.(不考虑汽车与小船本身的大小).






经市场调查,某商品在过去的100天内的销售量(单位:件)和价格(单位:元)均为时间
(单位:天)的函数,且销售量满足
=
,价格满足
=
.
(1)求该种商品的日销售额
与时间
的函数关系;
(2)若销售额超过16610元,商家认为该商品的收益达到理想程度,请判断该商品在哪几天的收益达到理想程度?





(1)求该种商品的日销售额


(2)若销售额超过16610元,商家认为该商品的收益达到理想程度,请判断该商品在哪几天的收益达到理想程度?
网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从
年
月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量
万件与投入实体店体验安装的费用
万元之间满足
函数关系式.已知网店每月固定的各种费用支出为
万元,产品每
万件进货价格为
万元,若每件产品的售价定为“进货价的
”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是________万元.









有一种新型的洗衣液,去污速度特别快.已知每投放
(
且
)个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度
(克/升)随着时间
(分钟) 变化的函数关系式近似为
,其中
.根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.
(1)若投放
个单位的洗衣液,3分钟时水中洗衣液的浓度为4 (克/升),求
的值;
(2)若投放4个单位的洗衣液,则有效去污时间可达几分钟?







(1)若投放


(2)若投放4个单位的洗衣液,则有效去污时间可达几分钟?
为了缓解城市交通压力,某市市政府在市区一主要交通干道修建高架桥,两端的桥墩现已建好,已知这两桥墩相距m米,“余下的工程”只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+
)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记“余下工程”的费用为y万元.
(1)试写出工程费用y关于x的函数关系式;
(2)当m=640米时,需新建多少个桥墩才能使工程费用y最小?并求出其最小值.

(1)试写出工程费用y关于x的函数关系式;
(2)当m=640米时,需新建多少个桥墩才能使工程费用y最小?并求出其最小值.
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润
(单位:元)关于当天需求量
(单位:枝,
)的函数解析式.
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

以100天记录的各需求量的频率作为各需求量发生的概率.
(1)若花店一天购进17枝玫瑰花,
表示当天的利润(单位:元),求
的分布列及数学期望;
(2)若花店计划一天购进16枝或17枝玫瑰花,以利润角度看,你认为应购进16枝好还是17枝好?请说明理由.
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润



(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

以100天记录的各需求量的频率作为各需求量发生的概率.
(1)若花店一天购进17枝玫瑰花,


(2)若花店计划一天购进16枝或17枝玫瑰花,以利润角度看,你认为应购进16枝好还是17枝好?请说明理由.