- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- + 常见的函数模型(1)——二次、分段函数
- 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某商场对顾客实行购物优惠活动,规定一次购物付款总额:
(1)如果不超过200元,则不给予优惠;
(2)如果超过200元但不超过500元,则按标价给予9折优惠;
(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.
某人单独购买A,B商品分别付款168元和423元,假设他一次性购买A,B两件商品,则应付款是
(1)如果不超过200元,则不给予优惠;
(2)如果超过200元但不超过500元,则按标价给予9折优惠;
(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.
某人单独购买A,B商品分别付款168元和423元,假设他一次性购买A,B两件商品,则应付款是
A.413.7元 | B.513.7元 | C.546.6元 | D.548.7元 |
经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如右图所示.经销商为下一个销售季度购进了130t该农产品.以
(单位:t,100≤
≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.

(Ⅰ)将T表示为
的函数;
(Ⅱ)根据直方图估计利润T不少于57000元的概率.



(Ⅰ)将T表示为

(Ⅱ)根据直方图估计利润T不少于57000元的概率.
某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图(如图):

记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元)n表示购机的同时购买的易损零件数.若
,求y与x的函数解析式.

记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元)n表示购机的同时购买的易损零件数.若

某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为
(
),则出厂价相应地提高比例为
,同时预计年销售量增加的比例为
0.60x,已知年利润=(出厂价-投入成本)×年销售量.
(1)写出本年度预计的年利润
与投入成本增加的比例
的关系式;
(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比
应在什么范围内?




(1)写出本年度预计的年利润


(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比

某建筑工地要建造一批简易房,供群众临时居住,房形为长方体,高2.5米,前后墙用2.5米高的彩色钢板,两侧用2.5米高的复合钢板,两种钢板的价格都用长度来计算(即钢板的高均为2.5米,用长度乘以单价就是这块钢板的价格),每米单价:彩色钢板为450元,复合钢板为200元,房顶用其他材料建造,每平方米材料费为200元,每套房材料费控制在32000元以内.
(1)设房前面墙的长为
,两侧墙的长为
,一套简易房所用材料费为
,试用
表示
.
(2)一套简易房面积
的最大值是多少?当
最大时,前面墙的长度是多少?
(1)设房前面墙的长为





(2)一套简易房面积


某商品每天以每瓶5元的价格从奶厂购进若干瓶24小时新鲜牛奶,然后以每瓶8元的价格出售,如果当天该牛奶卖不完,则剩下的牛奶就不再出售,由奶厂以每瓶2元的价格回收处理.
(1)若商品一天购进20瓶牛奶,求当天的利润
(单位:元)关于当天需求量
(单位:瓶,
)
的函数解析式;
(2)商店记录了50天该牛奶的日需求量(单位:瓶),整理得下表:

以50天记录的各需求量的频率作为各需求量发生的概率,假设商店一天购进20瓶牛奶,随机变量
表
示当天的利润(单位:元),求随机变量
的分布列和数学期望.
(1)若商品一天购进20瓶牛奶,求当天的利润



的函数解析式;
(2)商店记录了50天该牛奶的日需求量(单位:瓶),整理得下表:

以50天记录的各需求量的频率作为各需求量发生的概率,假设商店一天购进20瓶牛奶,随机变量

示当天的利润(单位:元),求随机变量

某商品每天以每瓶5元的价格从奶厂购进若干瓶24小时新鲜牛奶,然后以每瓶8元的价格出售,如果当天该牛奶卖不完,则剩下的牛奶就不再出售,由奶厂以每瓶2元的价格回收处理.
(1)若商品一天购进20瓶牛奶,求当天的利润
(单位:元)关于当天需求量
(单位:瓶,
)的函数解析式;
(2)商店记录了50天该牛奶的日需求量(单位:瓶),整理得下表:

假设商店一天购进20瓶牛奶,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润低于60元的概率.
(1)若商品一天购进20瓶牛奶,求当天的利润



(2)商店记录了50天该牛奶的日需求量(单位:瓶),整理得下表:

假设商店一天购进20瓶牛奶,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润低于60元的概率.
经市场调查,某商品每吨的价格为
百元时,该商品的月供给量为
万吨,
;月需求量为
万吨,
. 当该商品的需求量大于供给量时,销售量等于供给量;当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积.
(1)若
,问商品的价格为多少时,该商品的月销售额最大?
(2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6百元,求实数
的取值范围.





(1)若

(2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6百元,求实数

某桶装水经营部每天的房租、人员工资等固定成本为
元,每桶水的进价是
元,销售单价与日均销售量的关系如下表所示.

请根据以上数据分析,这个经营部定价在 元/桶才能获得最大利润.



请根据以上数据分析,这个经营部定价在 元/桶才能获得最大利润.
某公司经过测算投资
百万元,投资项目
与产生的经济效益
之间满足:
,投资项目
产生的经济效益
之间满足:
.
(1)现公司共有1千万资金可供投资,应如何分配资金使得投资收益总额最大?
(2)投资边际效应函数
,当边际值小于0时,不建议投资,则应如何分配投资?







(1)现公司共有1千万资金可供投资,应如何分配资金使得投资收益总额最大?
(2)投资边际效应函数
