- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- + 常见的函数模型(1)——二次、分段函数
- 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某工厂生产一种机器的固定成本为5000元,且每生产100部,需要增加投入2500元,对销售市场进行调查后得知,市场对此产品的需求量为每年500部.已知年销售收入为
,其中
是产品售出的数量
.
(1)若
为年产量,
表示年利润,求
的表达式.(年利润=年销售收入—投资成本(包括固定成本)).
(2)当年产量为何值时,工厂的年利润最大,其最大值是多少?



(1)若



(2)当年产量为何值时,工厂的年利润最大,其最大值是多少?
某自来水厂的蓄水池中有
吨水,每天零点开始向居民供水,同时以每小时
吨的速度向池中注水.已知
小时内向居民供水总量为
吨
,问
(1)每天几点时蓄水池中的存水量最少?
(2)若池中存水量不多于
吨时,就会出现供水紧张现象,则每天会有几个小时出现这种现象?





(1)每天几点时蓄水池中的存水量最少?
(2)若池中存水量不多于

《中华人民共和国个人所得税》规定,公民全月工资所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额。此项税款按下表分段累计计算:
全月应纳税所得额 | 税率(![]() |
不超过500元的部分 | 5 |
超过500元至2000元的部分 | 10 |
超过2000元的部分 | 15 |
(1)求某人当月所交税款


(2)若某人某月所交税款为26.78元,求当月的工资
(3)若某人当月的工资收入在3000元至6000元之间,求该月所交税款的范围
某地发生特大地震和海啸,使当地的自来水受到了污染,某部门对水质检测后,决定往水中投放一种药剂来净化水质.已知每投放质量为
的药剂后,经过
天该药剂在水中释放的浓度
(毫克/升) 满足
,其中
,当药剂在水中释放的浓度不低于
(毫克/升)时称为有效净化;当药剂在水中释放的浓度不低于
(毫克/升) 且不高于10(毫克/升)时称为最佳净化
(1)如果投放的药剂质量为
,试问自来水达到有效净化一共可持续几天?
(2)如果投放的药剂质量为
,为了使在7天之内(从投放药剂算起包括7天)的自来水达到最佳净化,试确定应该投放的药剂质量
的值







(1)如果投放的药剂质量为

(2)如果投放的药剂质量为


某商品进货价每件50元,据市场调查,当销售价格(每件x元)为50<x≤80时,每
天售出的件数为

要在墙上开一个上部为半圆,下部为矩形的窗户(如图所示),在窗框总长度为
的条件下,

(1) 请写出窗户的面积与圆的直径的函数关系;
(2) 要使窗户透光面积最大,窗户应具有怎样的尺寸?并写出最大值.


(1) 请写出窗户的面积与圆的直径的函数关系;
(2) 要使窗户透光面积最大,窗户应具有怎样的尺寸?并写出最大值.
某人以12.1万元购买了一辆汽车用于上班,每年用于保险费和汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……,依等差数列逐年递增.
(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;
(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;
(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
我国政府一直致力于“改善民生,让利于民”,本年度令人关注的一件实事是:从2011年9月1日起个人所得税按新标准缴纳,新旧个税标准如下表:

但有的地方违规地将9月份的个人所得税仍按旧标准计算,国家税务总局明确要求多缴的税金要退还.若某人9月份的个人所得税被按旧标准计算,被扣缴的税金为475元,则此人9月份被多扣缴的税金是 元.

但有的地方违规地将9月份的个人所得税仍按旧标准计算,国家税务总局明确要求多缴的税金要退还.若某人9月份的个人所得税被按旧标准计算,被扣缴的税金为475元,则此人9月份被多扣缴的税金是 元.
据预测,某旅游景区游客人数在





(Ⅰ)若该景区游客消费总额不低于

(Ⅱ)当景区游客的人数为多少人时,游客的人均消费最高?并求游客的人均最高消费额
某公司通过报纸和电视两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与报纸广告费用x1(万元)及电视广告费用x2(万元)之间的关系有如下经验公式:R=-
(1)若提供的广告费用共为5万元,求最优广告策略.(即收益最大的策略,其中收益=销售收入-广告费用)
(2)在广告费用不限的情况下,求最优广告策略

(1)若提供的广告费用共为5万元,求最优广告策略.(即收益最大的策略,其中收益=销售收入-广告费用)
(2)在广告费用不限的情况下,求最优广告策略