刷题首页
题库
高中数学
题干
某建筑工地要建造一批简易房,供群众临时居住,房形为长方体,高2.5米,前后墙用2.5米高的彩色钢板,两侧用2.5米高的复合钢板,两种钢板的价格都用长度来计算(即钢板的高均为2.5米,用长度乘以单价就是这块钢板的价格),每米单价:彩色钢板为450元,复合钢板为200元,房顶用其他材料建造,每平方米材料费为200元,每套房材料费控制在32000元以内.
(1)设房前面墙的长为
,两侧墙的长为
,一套简易房所用材料费为
,试用
表示
.
(2)一套简易房面积
的最大值是多少?当
最大时,前面墙的长度是多少?
上一题
下一题
0.99难度 解答题 更新时间:2016-03-10 05:30:25
答案(点此获取答案解析)
同类题1
某种型号的汽车紧急刹车后滑行的距离
与刹车时的速度
的关系可以用
来描述,已知这种型号的汽车在速度为60
时,紧急刹车后滑行的距离为
.一辆这
种型号的汽车紧急刹车后滑行的距离为
,则这辆车的行驶速度为
.
同类题2
某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品
(百台),其总成本为
(万元),其中固定成本为
万元,并且每生产
百台的生产成本为
万元(总成本
固定成本
生产成本).销售收入
(万元)满足
,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数
的解析式(利润
销售收入
总成本);
(2)工厂生产多少台产品时,可使盈利最多?
同类题3
某公司有价值
万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,从而提高产品附加值,改造需要投入,假设附加值
万元与技术改造投入
万元之间的关系满足:①
与
和
的乘积成正比;②
时,
;③
,其中
为常数,且
.
(Ⅰ)设
,求
表达式,并求
的定义域;
(Ⅱ)求出附加值
的最大值,并求出此时的技术改造投入.
同类题4
某商品在近30天内每件的销售价格
(单位:元)与销售时间
(单位:天)的函数关系为
,
,且该商品的日销售量Q(单位:件)与销售时间
(单位:天)的函数关系为
,则这种商品的日销售量金额最大的一天是30天中的第__________天.
同类题5
某企业用180万元购买一套新设备,该套设备预计平均每年能给企业带来100万元的收入,维护设备的正常运行第一年各种费用约为10万元,且从第二年开始每年比上一年所需费用要增加10万元.
(1)求该设备给企业带来的总利润
y
(万元)与使用年数
x
(
x
∈
N
*
)的函数关系;
(2)这套设备使用多少年,可使年平均利润最大?
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
利用二次函数模型解决实际问题