- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- + 常见的函数模型(1)——二次、分段函数
- 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某种商品在30天内每克的销售价格
(元)与时间
的函数图像是如图所示的两条线段
,
(不包含
,
两点);该商品在 30 天内日销售量
(克)与时间
(天)之间的函数关系如下表所示.

(1)根据提供的图象,写出该商品每克销售的价格
(元)与时间
的函数关系式;
(2)根据表中数据写出一个反映日销售量
随时间
变化的函数关系式;
(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的
值.
(注:日销售金额=每克的销售价格×日销售量)








第![]() | 5 | 1 5 | 2 0 | 3 0 |
销售量![]() | 3 5 | 2 5 | 2 0 | 1 0 |

(1)根据提供的图象,写出该商品每克销售的价格


(2)根据表中数据写出一个反映日销售量


(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的

(注:日销售金额=每克的销售价格×日销售量)
乔经理到老陈的果园里一次性采购一种水果,他俩商定:乔经理的采购价
(元/吨)与采购量
(吨)之间函数关系的图像如图中的折线段
所示(不包含端点
但包含端点
).
(1)求
与
之间的函数关系式;
(2)已知老陈种植水果的成本是2800元/吨,那么乔经理的采购量为多少时,老陈在这次买卖中所获的利润
最大?最大利润是多少?





(1)求


(2)已知老陈种植水果的成本是2800元/吨,那么乔经理的采购量为多少时,老陈在这次买卖中所获的利润


某城市为保护环境、维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月用水超过8吨,超过部分加倍收费.若某职工某月缴水费20元,则该职工这个月实际用水( )
A.10吨 | B.13吨 | C.11吨 | D.9吨 |
甲用1 000元人民币购买了一手股票,随即他将这手股票卖给乙,获利10%,而后乙又将这手股票卖给甲,但乙损失了10%,最后甲又按乙卖给甲的价格的九成将这手股票卖给了乙.在上述股票交易中( )
A.甲刚好盈亏平衡 | B.甲盈利9元 |
C.甲盈利1元 | D.甲亏本1.1元 |
旅游社为某旅游团包飞机去旅游,其中旅行社的包机费为15 000元.旅游团中每人的飞机票按以下方式与旅行社结算:若旅游团人数在30人或30人以下,飞机票每张收费900元;若旅游团人数多于30人,则给予优惠,每多1人,机票费每张减少10元,但旅游团人数最多为75人.
(1)写出飞机票的价格关于旅游团人数的函数;
(2)旅游团人数为多少时,旅行社可获得最大利润?
(1)写出飞机票的价格关于旅游团人数的函数;
(2)旅游团人数为多少时,旅行社可获得最大利润?
某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=0.1x2-11x+3 000,若每台产品的售价为25万元,则生产者的利润取最大值时,产量x等于________.
某玩具所需成本费用为P元,且P=1 000+5x+
x2,而每套售出的价格为Q元,其中Q(x)=a+
(a,b∈R),
(1)问:玩具厂生产多少套时,使得每套所需成本费用最少?
(2)若生产出的玩具能全部售出,且当产量为150套时利润最大,此时每套价格为30元,求a,b的值.(利润=销售收入-成本).


(1)问:玩具厂生产多少套时,使得每套所需成本费用最少?
(2)若生产出的玩具能全部售出,且当产量为150套时利润最大,此时每套价格为30元,求a,b的值.(利润=销售收入-成本).
建造一个容积为8 m3,深为2 m的长方体无盖水池,若池底每平方米120元,池壁的造价为每平方米80元,这个水池的最低造价为________元.
某厂生产某种产品的年固定成本为250万元,每生产
千件,需另投入成本
,当年产量不足80千件时,
(万元);当年产量不小于80千件时,
(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润
(万元)关于年产量
(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?




(1)写出年利润


(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
2017年两会继续关注了乡村教师的问题,随着城乡发展失衡,乡村教师待遇得不到保障,流失现象严重,教师短缺会严重影响乡村孩子的教育问题,为此,某市今年要为某所乡村中学招聘储备未来三年的教师,现在每招聘一名教师需要2万元,若三年后教师严重短缺时再招聘,由于各种因素,则每招聘一名教师需要5万元,已知现在该乡村中学无多余教师,为决策应招聘多少乡村教师搜集并整理了该市100所乡村中学在过去三年内的教师流失数,得到如下的柱状图:记x表示一所乡村中学在过去三年内流失的教师数,y表示一所乡村中学未来四年内在招聘教师上所需的费用(单位:万元),n表示今年为该乡村中学招聘的教师数,为保障乡村孩子教育不受影响,若未来三年内教师有短缺,则第四年马上招聘.

(1)若n=19,求y与x的函数解析式;
(2)若要求“流失的教师数不大于n”的频率不小于0.5,求n的最小值;
(3)假设今年该市为这100所乡村中学的每一所都招聘了19个教师或20个教师,分别计算该市未来四年内为这100所乡村中学招聘教师所需费用的平均数,以此作为决策依据,今年该乡村中学应招聘19名还是20名教师?

(1)若n=19,求y与x的函数解析式;
(2)若要求“流失的教师数不大于n”的频率不小于0.5,求n的最小值;
(3)假设今年该市为这100所乡村中学的每一所都招聘了19个教师或20个教师,分别计算该市未来四年内为这100所乡村中学招聘教师所需费用的平均数,以此作为决策依据,今年该乡村中学应招聘19名还是20名教师?