随着城市地铁建设的持续推进,市民的出行也越来越便利.根据大数据统计,某条地铁线路运行时,发车时间间隔t(单位:分钟)满足:4≤t≤15,N,平均每趟地铁的载客人数p(t)(单位:人)与发车时间间隔t近似地满足下列函数关系:,其中.
(1)若平均每趟地铁的载客人数不超过1500人,试求发车时间间隔t的值.
(2)若平均每趟地铁每分钟的净收益为(单位:元),问当发车时间间隔t为多少时,平均每趟地铁每分钟的净收益最大?井求出最大净收益.
当前题号:1 | 题型:解答题 | 难度:0.99
如果某种放射性元素每年的衰减率是,那么的这种物质的半衰期(剩余量为原来的一半所需的时间)等于(  )
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
某机构通过对某企业今年的生产经营情况的调查,得到每月利润(单位:万元)与相应月份数的部分数据如表:

1
4
7
12

229
244
241
196
 
(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述的变化关系,并说明理由,
(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.
当前题号:3 | 题型:解答题 | 难度:0.99
随着创新驱动发展战略的不断深入实施,高新技术企业在科技创新和经济发展中的带动作用日益凸显,某能源科学技术开发中心拟投资开发某新型能源产品,估计能获得万元的投资收益,现准备制定一个对科研课题组的奖励议案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,奖金不超过万元,同时奖金不超过投资收益的.(即:设奖励方案函数模拟为时,则公司对函数模型的基本要求是:当时,①是增函数;②恒成立;③恒成立.)
(1)现有两个奖励函数模型:(I);(II).试分析这两个函数模型是否符合公司要求?
(2)已知函数符合公司奖励方案函数模型要求,求实数的取值范围.
当前题号:4 | 题型:解答题 | 难度:0.99
某创业投资公司拟投资开发某种新能源产品,估计能获得万元万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,奖金不超过万元,同时奖金不超过投资收益的.(即:设奖励方案函数模型为时,则公司对函数模型的基本要求是:当时,①是增函数;②恒成立;③恒成立.)
(1)判断函数是否符合公司奖励方案函数模型的要求,并说明理由;
(2)已知函数符合公司奖励方案函数模型要求,求实数的取值范围.
(参考结论:函数的增区间为,减区间为
当前题号:5 | 题型:解答题 | 难度:0.99
上海地铁四通八达,给市民出行带来便利,已知某条线路运行时,地铁的发车时间间隔(单位:分字)满足:,经测算,地铁载客量与发车时间间隔满足,其中.
(1)请你说明的实际意义;
(2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?并求最大净收益.
当前题号:6 | 题型:解答题 | 难度:0.99
放射性物质的半衰期定义为每经过时间,该物质的质量会衰退原来的一半,铅制容器中有两种放射性物质,开始记录时容器中物质的质量是物质的质量的2倍,而120小时后两种物质的质量相等,已知物质的半衰期为7.5小时,则物质的半衰期为_____小时
当前题号:7 | 题型:填空题 | 难度:0.99
《中华人民共和国个人所得税法》第十四条中有下表(部分):
个人所得税税率(工资、薪金所得适用)
级数
全月应纳所得额
税率(%)
1
不超过元的部分

2
超过元至元的部分

3
超过元至元的部分

4
超过元至元的部分

5
超过元至元的部分

 
上表中“全月应纳税所得额”是从月工资、薪金收入中减去元后的余额.如果某人月工资、薪金收入为元,那么他应纳的个人所得税为________元.
当前题号:8 | 题型:填空题 | 难度:0.99
屠呦呦,第一位获得诺贝尔科学奖项的中国本土科学家,在2015年获得诺贝尔生理学或医学奖,理由是她发现了青蒿素.这种药品可以有效降低疟疾患者的死亡率,从青篙中提取的青篙素抗疟性超强,几乎达到100%.据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.

(Ⅰ)写出服药一次后yt之间的函数关系式
(Ⅱ)据进一步测定:每毫升血液中含药量不少于微克时,治疗有效,求服药一次后治疗有效的时间是多长?
当前题号:9 | 题型:解答题 | 难度:0.99
某种放射性元素的原子数N随时间t的变化规律是,其中是正的常数.
(1)说明函数是增函数还是减函数;
(2)把t表示成原子数N的函数;
(3)求当时,t的值.
当前题号:10 | 题型:解答题 | 难度:0.99