- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用
年的隔热层,每厘米厚的隔热层建造成本为
万元.该建筑物每年的能源消耗费用
(单位:万元)与隔热层厚度
(单位:厘米)满足关系:
.若不建隔热层,每年的能源消耗费用为
万元.设
为隔热层建造费用与
年的能源消耗费用之和.
(1)求
的值及
的表达式;
(2)隔热层修建多厚时,总费用
最小,并求其最小值.








(1)求


(2)隔热层修建多厚时,总费用

甲、乙两地相距
,汽车从甲地匀速行驶到乙地,速度不超过
.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度
(单位:
)的平方成正比,且比例系数为
,固定部分为
元.
(1)把全程运输成本
(元)表示为速度
的函数,并求出当
,
时,汽车应以多大速度行驶,才能使得全程运输成本最小;
(2)随着汽车的折旧,运输成本会发生一些变化,那么当
,
元,此时汽车的速度应调整为多大,才会使得运输成本最小.






(1)把全程运输成本




(2)随着汽车的折旧,运输成本会发生一些变化,那么当


经市场调查,某门市部的一种小商品在过去的20天内的日销售量(件)与价格(元)均为时间
(天)的函数,且日销售量近似满足函数
(件),而且销售价格近似满足于
(元).
(1)试写出该种商品的日销售额
与时间
的分段函数表达式
;
(2)求该种商品的日销售额
的最大值.



(1)试写出该种商品的日销售额



(2)求该种商品的日销售额

经市场调查,某超市的一种商品在过去的一个月内(以30天计算),销售价格
与时间(天)的函数关系近似满足
,销售量
与时间(天)的函数关系近似满足
.
(1)试写出该商品日销售金额
关于时间
的函数表达式;
(2)求该商品的日销售金额
的最大值与最小值.




(1)试写出该商品日销售金额


(2)求该商品的日销售金额

某数学小组到进行社会实践调查,了解鑫鑫桶装水经营部在为如何定价发愁。进一步调研了解到如下信息:该经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表:
根据以上信息,你认为该经营部定价为多少才能获得最大利润?( )
销售单价/元 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
日均销售量/桶 | 480 | 440 | 400 | 360 | 320 | 280 | 240 |
根据以上信息,你认为该经营部定价为多少才能获得最大利润?( )
A.每桶8.5元 | B.每桶9.5元 | C.每桶10.5元 | D.每桶11.5元 |
某数学小组到进行社会实践调查,了解到某公司为了实现1000万元利润目标,准备制定激励销售人员的奖励方案:在销售利润超过10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.同学们利用函数知识,设计了如下的函数模型,其中符合公司要求的是(参考数据:
,
)( )


A.![]() | B.![]() | C.![]() | D.![]() |
某公司研发出一款新产品,批量生产前先同时在甲、乙两城市销售30天进行市场调查.调查结果发现:甲城市的日销售量
与天数t的对应关系服从图①所示的函数关系;乙城市的日销售量
与天数t的对应关系服从图②所示的函数关系;每件产品的销售利润
与天数t的对应关系服从图③所示的函数关系,图①是抛物线的一部分.

(Ⅰ)设该产品的销售时间为
,日销售量利润为
,求
的解析式;
(Ⅱ)若在30的销售中,日销售利润至少有一天超过2万元,则可以投入批量生产,该产品是否可以投入批量生产,请说明理由.






(Ⅰ)设该产品的销售时间为



(Ⅱ)若在30的销售中,日销售利润至少有一天超过2万元,则可以投入批量生产,该产品是否可以投入批量生产,请说明理由.
尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震释放出的能量
(单位:焦耳)与地震里氏震级
之间的关系为
.
(1)已知地震等级划分为里氏
级,根据等级范围又分为三种类型,其中小于
级的为“小地震”,介于
级到
级之间的为“有感地震”,大于
级的为“破坏性地震”若某次地震释放能量约
焦耳,试确定该次地震的类型;
(2)2008年汶川地震为里氏
级,2011年日本地震为里氏
级,问:2011年日本地震所释放的能量是2008年汶川地震所释放的能量的多少倍? (取
)



(1)已知地震等级划分为里氏






(2)2008年汶川地震为里氏



如图,某山地车训练中心有一直角梯形森林区域
,其四条边均为道路,其中
,
,
千米,
千米,
千米.现有甲、乙两名特训队员进行野外对抗训练,要求同时从
地出发匀速前往
地,其中甲的行驶路线是
,速度为
千米/小时,乙的行驶路线是
,速度为
千米/小时.

(1)若甲、乙两名特训队员到达
地的时间相差不超过
分钟,求乙的速度
的取值范围;
(2)已知甲、乙两名特训队员携带的无线通讯设备有效联系的最大距离是
千米.若乙先于甲到达
地,且乙从
地到
地的整个过程中始终能用通讯设备对甲保持有效联系,求乙的速度
的取值范围.













(1)若甲、乙两名特训队员到达



(2)已知甲、乙两名特训队员携带的无线通讯设备有效联系的最大距离是





亚洲某大国GDP的年平均增长率为6.5%,按此增长率发展,大约多少年后该国GDP会翻两番(即为原来的4倍)?(
,
.结果精确到整数)

