- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,要在河岸
的一侧修建一条休闲式人行道,进行图纸设计时,建立了图中所示坐标系,其中
,
在
轴上,且
,道路的前一部分为曲线段
,该曲线段为二次函数
在
时的图像,最高点为
,道路中间部分为直线段
,
,且
,道路的后一段是以
为圆心的一段圆弧
.

(1)求
的值;
(2)求
的大小;
(3)若要在扇形区域
内建一个“矩形草坪”
,
在圆弧
上运动,
、
在
上,记
,则当
为何值时,“矩形草坪”面积最大.















(1)求

(2)求

(3)若要在扇形区域









2016年11月3日20点43分我国长征运载火箭在海南文昌发射中心成功发射,它被公认为我国已从航天大国向航天强国迈进的重要标志.长征五号运载火箭的设计生产采用很多新材料,甲工厂承担了某种材料的生产,并以
千克/时的速度匀速生产(为保证质量要求
),每小时可消耗
材料
千克,已知每小时生产1千克该产品时,消耗
材料10千克.
(1)设生产
千克该产品,消耗
材料
千克,试把
表示为
的函数.
(2)要使生产1000千克该产品消耗的
材料最少,工厂应选取何种生产速度?并求消耗的
材料最少为多少?





(1)设生产





(2)要使生产1000千克该产品消耗的


某服装厂生产一种服装,每件服装的成本为80元,出厂单价为120元.该厂为鼓励销售商订购,决定当一次订购超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.04元.根据市场调查,销售商一次订购量不会超过600件.
(1)设一次订购为
件服装的实际出厂单价为
元,写出函数
的表达式;
(2)当销售商一次订购多少件服装时,该服装厂获得的利润最大?
(1)设一次订购为



(2)当销售商一次订购多少件服装时,该服装厂获得的利润最大?
某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:
,其中
是仪器的月产量.(注:总收益=总成本+利润)
(1)将利润
表示为月产量
的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?


(1)将利润


(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?
已知函数
的定义域为
,若对任意
,当
时,都有
,则称函数
在
上为非减函数.设函数
在
上为非减函数,且满足以下三个条件:①
;②
;③
.则
( )













A.![]() | B.![]() | C.![]() | D.![]() |