每年五月最受七中学子期待的学生活动莫过于学生节,在每届学生节活动中,着七中校服的布偶“七中熊”尤其受同学和老师欢迎.已知学生会将在学生节当天售卖“七中熊”,并且会将所获得利润全部捐献于公益组织.为了让更多同学知晓,学生会宣传部需要前期在学校张贴海报宣传,成本为250元,并且当学生会向厂家订制只“七中熊”时,需另投入成本(元),.通过市场分析,学生会订制的“七中熊”能全部售完.若学生节当天,每只“七中熊”售价为70元,则当销量为______只时,学生会向公益组织所捐献的金额会最大.
当前题号:1 | 题型:填空题 | 难度:0.99
我市某旅行社拟组团参加衡山文化一日游,预测每天游客人数在50至130人之间,游客人数(人)与游客的消费总额(元)之间近似地满足关系:.那么游客的人均消费额最高为______________元.
当前题号:2 | 题型:填空题 | 难度:0.99
市实施全域旅游,将乡村旅游公路建设与特色田园乡村发展结合,精心打造全长365公里的“1号公路”,对内串联区域内主要景区景点和自然村,对外通达周边县(市),以路引景、为景串线,形成一个“大环小圈、内连外引”的路网体系.如今的“1号公路”,不仅成为该市旅游业的“颜值担当”,更成为推动乡村振兴的“实力担当”,农村居住环境日益改善,新农村别墅随处可见.图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面是全等的等腰梯形,左右两坡屋面是全等的三角形.点在平面上的射影分别为(即:平面,垂足为,垂足为).已知,梯形的面积是面积的2.2倍..

(1)当时,求屋顶面积的大小;
(2)求屋顶面积关于的函数关系式;
(3)已知上部屋顶造价与屋顶面积成正比,比例系数为为正的常数),下部主体造价与其高度成正比,比例系数为.现欲造一栋上、下总高度为的别墅,试问:当为何值时,总造价最低?
当前题号:3 | 题型:解答题 | 难度:0.99
某抛物线型拱桥水面宽度20m,拱顶离水面4m,现有一船宽9m,船在水面上高3m
(1)建立适当平面直角坐标系,求拱桥所在抛物线标准方程;
(2)计算这条船能否从桥下通过.
当前题号:4 | 题型:解答题 | 难度:0.99
某生物探测器在水中逆流行进时,所消耗的能量为EcvnT,其中v为行进时相对于水的速度,T为行进时的时间(单位:h),c为常数,n为能量次级数,如果水的速度为4km/h,该生物探测器在水中逆流行进200km
(1)求T关于v的函数关系式;
(2)①当能量次级数为2时,求探测器消耗的最少能量;
②当能量次级数为3时,试确定v的大小,使该探测器消耗的能量最少.
当前题号:5 | 题型:解答题 | 难度:0.99
保护环境,防治环境污染越来越得到人们的重视,某企业在现有设备下每日生产总成本(单位:万元)与日产量(单位:吨)之间的函数关系式为.现为了减少大气污染,该企业引进了除尘设备,每吨产品除尘费用为万元,除尘后,当日产量时,每日生产总成本
(1)求的值;
(2)若每吨产品出厂价为48万元,试求除尘后日产量为多少吨时,每吨产品的利润最大,最大利润为多少万元?
当前题号:6 | 题型:解答题 | 难度:0.99
某村充分利用自身资源,大力发展养殖业以增加收入.计划共投入80万元,全部用于甲、乙两个项目,要求每个项目至少要投入20万元在对市场进行调研时发现甲项目的收益与投入x(单位:万元)满足,乙项目的收益与投入x(单位:万元)满足.
(1)当甲项日的投入为25万元时,求甲、乙两个项目的总收益;
(2)问甲、乙两个项目各投入多少万元时,总收益最大?
当前题号:7 | 题型:解答题 | 难度:0.99
已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度(单位:℃)对某种鸡的时段产蛋量(单位:)的影响.为此,该企业收集了7个鸡舍的时段控制温度和产蛋量的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.







17.4
82.3
3.6
140
9.7
2935.1
35
 
其中.

(1)根据散点图判断,哪一个更适宜作为该种鸡的时段产蛋量关于鸡舍时段控制温度的回归方程类型?(给判断即可,不必说明理由)
(2)若用作为回归方程模型,根据表中数据,求出关于的回归方程;
(3)当时段控制温度为28℃时,鸡的时段产蛋量的预报值(精确到0.1)是多少?
附:①对于一组具有线性相关系的数据,其回归直线的斜率和截距的最小二乘估计分别为.
②参考值.





0.08
0.47
2.72
20.09
1096.63
 
当前题号:8 | 题型:解答题 | 难度:0.99
某投资公司计划投资两种金融产品,根据市场调查与预测,产品的利润与投资量x成正比例,其关系如图1,产品的利润与投资量x的算术平方根成正比例,其关系如图2;(利润与投资量单位:万元)

(1)分别将两产品的利润表示为投资量的函数关系式;
(2)该公司已有20万元资金,并全部投入两种产品中,问:怎样分配这20万元投资,才能使公司获得最大利润?其最大利润为多少万元?
当前题号:9 | 题型:解答题 | 难度:0.99
已知某民族品牌手机生产商为迎合市场需求,每年都会研发推出一款新型号手机.该公司现研发了一款新型智能手机并投入生产,生产这款手机的月固定成本为80万元,每生产1千台,须另投入27万元,设该公司每月生产千台并能全部销售完,每1千台的销售收入为万元,且.为更好推广该产品,手机生产商每月还支付各类广告费用20万元.
(Ⅰ)写出月利润(万元)关于月产量(千台)的函数解析式;
(Ⅱ)当月产量为多少千台时,该公司在这一型号的手机生产中所获月利润最大?
当前题号:10 | 题型:解答题 | 难度:0.99