- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
的部分图象如下图所示.

(1)若
的图像向左平移
个单位后,得到
的图像,求
的解析式;
(2)若方程
在
上有三个不同的实根,求
的取值范围.


(1)若




(2)若方程



运货卡车以每小时
千米的速度匀速行驶
千米,按交通法规则限制
(单位:千米/小时),假设汽油的价格是每升
元,而汽车每小时耗油
升,司机工资是每小时
元.
(1)求这次行车总费用
关于
的表达式;
(2)当
为何值时,这次行车的总费用最低,并求出最低费用的值.(精确到
)






(1)求这次行车总费用


(2)当


某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的年收益
与投资额
成正比,其关系如图1;投资股票等风险型产品的年收益
与投资额
的算术平方根成正比,其关系如图2.

(1)分别写出两种产品的年收益
和
的函数关系式;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大年收益,其最大年收益是多少万元?





(1)分别写出两种产品的年收益


(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大年收益,其最大年收益是多少万元?
某市有一特色酒店由一些完全相同的帐篷构成.每座帐篷的体积为
立方米,且分上下两层,其中上层是半径为
(单位:米)的半球体,下层是半径为
米,高为
米的圆柱体(如图).经测算,上层半球体部分每平方米建造费用为2千元,下方圆柱体的侧面、隔层和地面三个部分平均每平方米建造费用为3千元,设每座帐篷的建造费用为
千元.
参考公式:球的体积
,球的表面积
,其中
为球的半径.

(1)求
关于
的函数解析式,并指出该函数的定义域;
(2)当半径
为何值时,每座帐篷的建造费用最小,并求出最小值.





参考公式:球的体积




(1)求


(2)当半径

某地区山体大面积滑坡,政府准备调运一批赈灾物资共装26辆车,从某市出发以
的速度匀速直达灾区,如果两地公路长400km,且为了防止山体再次坍塌,每两辆车的间距保持在
.(车长忽略不计)设物资全部运抵灾区的时间为y小时,请建立y关于每车平均时速
的函数关系式,并求出车辆速度为多少千米/小时,物资能最快送到灾区?



如图,树人中学欲利用原有的墙(墙足够长)为背面,建造一间长方体形状的房屋作为体育器材室.房屋地面面积为
,高度为3m.若房屋侧面和正面每平方米的造价均为1000元,屋顶的造价为6000元,且不计房屋背面和地面的费用,则该房屋的最低总造价为( )



A.40000元 | B.42000元 | C.45000元 | D.48000元 |