- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某市一家庭今年一月份、二月份和三月份煤气用量和支付费用如下表所示:
该市煤气收费的方法是:煤气费=基本费+超额费+保险费.
若每月用气量不超过最低额度A(A>4)立方米时,只付基本费3元和每户每月定额保险费C(0<C≤5)元;若用气量超过A立方米时,超过部分每立方米付B元.
(1)根据上面的表格求A,B,C的值;
(2)记该家庭第四月份用气为x立方米,求应交的煤气费y元.
月份 | 用气量(立方米) | 煤气费(元) |
1 | 4 | 4.00 |
2 | 25 | 14.00 |
3 | 35 | 19.00 |
该市煤气收费的方法是:煤气费=基本费+超额费+保险费.
若每月用气量不超过最低额度A(A>4)立方米时,只付基本费3元和每户每月定额保险费C(0<C≤5)元;若用气量超过A立方米时,超过部分每立方米付B元.
(1)根据上面的表格求A,B,C的值;
(2)记该家庭第四月份用气为x立方米,求应交的煤气费y元.
某企业为了保护环境,发展低碳经济,在国家科研部门的支持下,进行技术攻关,新上了一个把二氧化碳处理转化为一种化工产品的项目,经测算,该项目月处理成本
(单位:元)与月处理量
(单位:吨)之间的函数关系可近似地表示为
,且每处理一吨二氧化碳所得的这种化工产品可获利
元,如果该项目不获利,那么亏损数额将由国家给予补偿.
(
)求
时,该项目的月处理成本.
(
)当
时,判断该项目能否获利?如果亏损,那么国家每月补偿数额(单位:元)的范围是多少?




(


(


某同学在研究函数
时,给出下面几个结论:
①等式
对任意的
恒成立;
②函数的值域为
;
③若
,则一定
;
④函数
在
上有三个零点.
其中正确的结论的序号是___________(写出所有正确结论的序号).

①等式


②函数的值域为

③若


④函数


其中正确的结论的序号是___________(写出所有正确结论的序号).
某小店每天以每份5元的价格从食品厂购进若干份食品,然后以每份10元的价格出售.如果当天卖不完,剩下的食品还可以每份1元的价格退回食品厂处理.
(Ⅰ)若小店一天购进16份,求当天的利润
(单位:元)关于当天需求量
(单位:份,
)的函数解析式;
(Ⅱ)小店记录了100天这种食品的日需求量(单位:份),整理得下表:
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)小店一天购进16份这种食品,
表示当天的利润(单位:元),求
的分布列及数学期望;
(ii)以小店当天利润的期望值为决策依据,你认为一天应购进食品16份还是17份?
(Ⅰ)若小店一天购进16份,求当天的利润



(Ⅱ)小店记录了100天这种食品的日需求量(单位:份),整理得下表:
日需求量![]() | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)小店一天购进16份这种食品,


(ii)以小店当天利润的期望值为决策依据,你认为一天应购进食品16份还是17份?