- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
海水受日月的引力在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下表是某港口某天的时刻与水深关系的预报.
(1)选用一个函数来近似描述这一天该港口的水深与时间的关系,给出整点时水深的近似数值(精确到0.001 m).
(2)一条货船的吃水深度(船底与水面的距离)为4 m,安全条例规定至少要有1.5 m的安全间隙(船底与洋底的距离),该船这一天何时能进入港口?在港口能呆多久?
(3)某船的吃水深度为4 m,安全间隙为1.5 m该船这一天在2:00开始卸货,吃水深度以0.3 m/h的速度减少,如果这条船停止卸货后需0.4 h才能驶到深水域,那么该船最好在什么时间停止卸货,将船驶向较深的水域?
时刻 | 水深/m | 时刻 | 水深/m | 时刻 | 水深/m |
0:00 | 5.0 | 9:18 | 2.5 | 18:36 | 5.0 |
3:06 | 7.5 | 12:24 | 5.0 | 21:42 | 2.5 |
6:12 | 5.0 | 15:30 | 7.5 | 24:00 | 4.0 |
(1)选用一个函数来近似描述这一天该港口的水深与时间的关系,给出整点时水深的近似数值(精确到0.001 m).
(2)一条货船的吃水深度(船底与水面的距离)为4 m,安全条例规定至少要有1.5 m的安全间隙(船底与洋底的距离),该船这一天何时能进入港口?在港口能呆多久?
(3)某船的吃水深度为4 m,安全间隙为1.5 m该船这一天在2:00开始卸货,吃水深度以0.3 m/h的速度减少,如果这条船停止卸货后需0.4 h才能驶到深水域,那么该船最好在什么时间停止卸货,将船驶向较深的水域?
如图,P,Q是以原点为圆心的单位圆上的两个动点,若它们同时从点A(1,0)出发,沿逆时针方向作匀角速度运动,其角速度分别为
(单位:弧度/秒),M为线段PQ的中点,记经过x秒后(其中
),
.
(I)求
的函数解析式;
(II)将
图象上的各点均向右平移2个单位长度,得到
的图象,求函数
的单调递减区间.



(I)求

(II)将




已知函数
,其中
是自然对数的底数,
.
(1)若
,求曲线
在点
处的切线方程;
(2)若
,求
的单调区间;
(3)若
,函数
的图象与函数
的图象有3个不同的交点,求实数
的取值范围.



(1)若



(2)若


(3)若




已知函数
.
(Ⅰ)求函数
的最小值;
(Ⅱ)求证:
;
(Ⅲ)对于函数
与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“分界线”.设函数
,
,
与
是否存在“分界线”?若存在,求出
的值;若不存在,请说明理由.

(Ⅰ)求函数

(Ⅱ)求证:


(Ⅲ)对于函数














设
是由满足下列条件的函数
构成的集合:
①方程
有实数根;
②函数
的导数
满足
(I )若函数
为集合M中的任一元素,试证明万程
只有一个实根;
(II) 判断函
是否是集合
中的元素,并说明理由;
(III) “对于(II)中函数
定义域内的任一区间
,都存在
,使得
”,请利用函数
的图象说明这一结论.


①方程

②函数



(I )若函数


(II) 判断函


(III) “对于(II)中函数




